Яков Исидорович Перельман никогда не был учёным в прямом значении этого слова – не совершал научных открытий, не имел званий и степеней, однако всю свою жизнь посвятил науке. Он никогда не считал себя писателем, но его книги выходили такими большими тиражами, что составили целую научно-популярную библиотеку. Став первым в стране популяризатором физики, геометрии, математики и астрономии, основоположником занимательной науки, одним из первых писателей жанра научно-популярной литературы, он успевал заниматься ещё множеством самых разных дел – преподавал, создавал новые учебные программы, редактировал журналы, участвовал в работе научных обществ, постоянно выступал с докладами.
Популяризацией науки задолго до Перельмана занимались многие авторы, но только он достиг в этом деле огромного мастерства, сумев точно нащупать его секреты и выработать «фирменный» стиль повествования. Профессор физики Петербургского университета Орест Данилович Хвольсон, познакомившись с Перельманом и узнав, что книга написана не учёным-физиком, а учёным-лесоводом, сказал Якову Исидоровичу: «Лесоводов-учёных у нас предостаточно, а вот людей, которые умели бы так писать о физике, как пишете вы, нет вовсе. Мой вам настоятельнейший совет: продолжайте, обязательно продолжайте писать подобные книги и впредь».
В чём же секрет произведений Перельмана? Именно он мастерски умел оперировать сухими цифрами, знал, как с помощью неожиданно простого и понятного сравнения привлечь внимание читателя к сложным научным фактам и явлениям природы. Он сохранил в себе способность удивляться и подмечать в обыденных вещах то, чего не видит большинство людей, и умел увлекательно рассказывать об этом другим. Я.И. Перельман впервые в России предложил перевести стрелку часов на час вперёд в целях экономии горючего, разработал проект первой советской противоградовой ракеты, а в середине 30-х годов он задумал и создал удивительный музей – «Дом занимательной науки», экспонаты которого поражали своими возможностями. Так, простые торговые весы могли без труда отгадать любое задуманное число и фамилию. Даже буфет «Дома занимательной науки» был устроен с разными причудами. Наряду с обычной здесь попадалась и «оперельманенная» посуда. Из бутылки, стоящей в битом льду, наливали кипящий чай, а чайная ложка таяла быстрее сахара, который она размешивала.
Вклад Перельмана в образование трудно переоценить: с 1913 года его книги только на русском языке переиздавались более 300 раз тиражом почти 15 миллионов экземпляров. Библиография Перельмана насчитывает более 1000 статей и заметок, опубликованных им в различных изданиях. И это помимо 47 научно-популярных, 40 научно-познавательных книг, 18 школьных учебников и учебных пособий. Книги Я.И. Перельмана 126 раз издавались в 18 зарубежных странах на более чем 15 языках.
«Занимательная механика» Я.И. Перельмана впервые была выпущена в 1930 году ленинградским издательством «Время» и с тех пор многократно переиздавалась.
Перед вами книга, по тексту соответствующая четвёртому изданию, вышедшему в 1937 году. Текст практически не претерпел изменений относительно использованных в нём реалий, лишь были внесены необходимые пояснения, учитывающие достижения современной науки. «Занимательная механика» продолжает знакомство читателя с физикой посредством живых примеров, сравнений и фактов, взятых из окружающей нас повседневности. Непростые вопросы, как и всегда у Перельмана, подаются в виде интересных задач, что не просто помогает понять, как работает мир, но и делает постижение науки невероятно увлекательным. Наглядно и образно поданные основы механики будут полезны не только юному, но и взрослому читателю, развивающему свой кругозор.
Держа в руках яйцо, вы ударяете по нему другим. Оба яйца одинаково прочны и сталкиваются одинаковыми частями. Которое из них должно разбиться – ударяемое или ударяющее? Вопрос был некогда поставлен американским журналом «Наука и изобретения». Журнал утверждал, что, согласно опыту, разбивается чаще «то яйцо, которое двигалось», другими словами – яйцо ударяющее.
«Скорлупа яйца, – пояснялось в журнале, – имеет кривую форму, причём давление, приложенное при ударе к неподвижному яйцу, действует на его скорлупу снаружи; но известно, что, подобно всякому своду, яичная скорлупа хорошо противостоит давлению извне. Иначе обстоит дело, когда усилие приложено к яйцу движущемуся. В этом случае движущееся содержимое яйца напирает в момент удара на скорлупу изнутри. Свод противостоит такому давлению гораздо слабее, чем напору снаружи, и – проламывается».
Когда та же задача была предложена мной в распространённой ленинградской газете, решения поступили крайне разнообразные.
Одни из решающих доказывали, что разбиться должно непременно ударяющее яйцо, другие – что именно оно-то и уцелеет. Доводы казались одинаково правдоподобными, и тем не менее оба утверждения в корне ошибочны! Установить рассуждением, которое из соударяющихся яиц должно разбиться, вообще невозможно, потому что между яйцами ударяющим и ударяемым различия не существует. Нельзя ссылаться на то, что ударяющее яйцо движется, а ударяемое неподвижно. Неподвижно – по отношению к чему? Если к земному шару, то ведь известно, что планета наша сама перемещается среди звёзд, совершая десяток разнообразных движений; все эти движения ударяемое яйцо разделяет так же, как и ударяющее, и никто не скажет, которое из них движется среди звёзд быстрее. Чтобы предсказать судьбу яиц по признакам движения и покоя, понадобилось бы переворошить всю астрономию и определить движение каждого из соударяющихся яиц относительно неподвижных звёзд. Да и это не помогло бы, потому что отдельные видимые звёзды тоже движутся, и вся их совокупность, Млечный Путь, перемещается по отношению к иным звёздным скоплениям.
Яичная задача, как видите, увлекла нас в бездны мироздания и всё же не приблизилась к разрешению. Впрочем, нет, приблизилась, если звёздная экскурсия помогла нам понять ту важную истину, что движение тела без указания другого тела, к которому это движение относится, есть попросту бессмыслица. Одинокое тело, взятое само по себе, двигаться не может, могут перемещаться только два тела — взаимно сближаться или взаимно удаляться. Оба соударяющихся яйца находятся в одинаковом состоянии движения: они взаимно сближаются, – вот всё, что мы можем сказать об их движении. Результат столкновения не зависит от того, какое из них мы пожелаем считать неподвижным и какое – движущимся.
Рис. 1. Какое яйцо разобьётся?
Триста лет назад Галилеем впервые была провозглашена относительность равномерного движения и покоя, их полная равнозначность. Этот принцип относительности классической механики не следует смешивать с принципом относительности Эйнштейна, выдвинутым уже на глазах другого поколения и представляющим дальнейшее развитие первого принципа. Об учении Эйнштейна речь будет в последней главе нашей книги; но для его понимания необходимо хорошо уяснить главные следствия галилеева принципа.
Из сейчас сказанного следует, что состояние равномерного прямолинейного движения неотличимо от состояния неподвижности при условии обратного равномерного и прямолинейного движения окружающей обстановки. Сказать: «Тело движется с постоянной скоростью» и «Тело находится в покое, но всё окружающее равномерно движется в обратную сторону» – значит утверждать одно и то же. Строго говоря, мы не должны говорить ни так, ни этак, а должны говорить, что тело и обстановка движутся одно относительно друг друга. Мысль эта усвоена далеко не всеми, кто имеет дело с механикой и физикой. А между тем она не чужда была уже автору «Дон Кихота», жившему в XVI веке и не читавшему Галилея. Ею проникнута одна из забавных сцен произведения Сервантеса – описание путешествия прославленного рыцаря и его оруженосца на деревянном коне.
«– Садитесь на круп лошади, – объяснили Дон Кихоту. – Требуется лишь одно: повернуть втулку, вделанную у коня на шее, и он унесёт вас по воздуху туда, где ожидает вас Маламбумо. Но чтобы высота не вызвала головокружения, надо ехать с завязанными глазами.
Обоим завязали глаза, и Дон Кихот дотронулся до втулки».
Окружающие стали уверять рыцаря, что он уже несётся по воздуху «быстрее стрелы».
«– Готов поклясться, – заявил Дон Кихот оруженосцу, – что во всю жизнь мою не ездил я на коне с более спокойной поступью. Всё идёт, как должно идти, и ветер дует.
– Это верно, – сказал Санчо, – я чувствую такой свежий воздух, точно на меня дуют из тысячи мехов.
Так на самом деле и было, потому что на них дули из нескольких больших мехов».
Деревянный конь Сервантеса – прообраз многочисленных аттракционов, придуманных для развлечения публики на выставках и в парках. То и другое основано на полной невозможности отличить состояние покоя от равномерного движения[1].
Многие привыкли противополагать покой движению, как небо – земле и огонь – воде. Это не мешает им, впрочем, устраиваться в вагоне на ночлег, нимало не заботясь о том, стоит ли поезд или мчится. Но в теории те же люди зачастую убеждённо оспаривают право считать мчащийся поезд неподвижным, а рельсы, землю под ними и всю окрестность – движущимися в противоположном направлении.
«Допускается ли такое толкование здравым смыслом машиниста? – спрашивает Эйнштейн, излагая эту точку зрения. – Машинист возразит, что он топит и смазывает не окрестность, а паровоз, следовательно, на паровозе должен сказаться и результат его работы, т. е. движение».
Довод представляется на первый взгляд очень сильным, едва ли не решающим. Однако вообразите, что рельсовый путь проложен вдоль экватора и поезд мчится на запад, против вращения земного шара. Тогда окрестность будет бежать навстречу поезду, и топливо будет расходоваться лишь на то, чтобы мешать паровозу увлекаться назад, – вернее, чтобы помогать ему хоть немного отставать от движения окрестности на восток. Пожелай машинист удержать поезд совсем в покое (относительно солнца), он должен был бы топить и смазывать паровоз так, как нужно для скорости в две тысячи километров в час.
Чтобы убедить тех, кто ещё сомневается в законности взаимной замены «покоя» и «движения», приведу слова одного из немногих противников учения Эйнштейна, профессора Ленарда. Критикуя Эйнштейна, он, однако, не посягает на теорию относительности Галилея. Вот что он пишет:
«Пока движение поезда остаётся вполне равномерным, нет никакой возможности определить, что именно находится в движении и что в покое: поезд или окрестность.
Устройство материального мира таково, что всегда во всякий данный момент оно исключает возможность абсолютного решения вопроса о наличии равномерного движения или покоя и оставляет место только для изучения равномерного движения тел относительно друг друга, так как участие наблюдателя в равномерном движении не отражается на наблюдаемых явлениях и их законах».
Можно представить такую обстановку, к которой иные, пожалуй, затруднятся практически применить принцип относительности. Вообразите, например, на палубе движущегося судна двух стрелков, направивших друг в друга своё оружие. Поставлены ли оба противника в строго одинаковые условия? Не вправе ли стрелок, стоящий спиной к носу корабля, жаловаться на то, что пущенная им пуля летит медленнее, чем пуля противника?
Конечно, по отношению к воде моря, пуля, пущенная против движения корабля, летит медленнее, чем на неподвижном судне, а пуля, направленная к носу, летит быстрее. Но это нисколько не нарушает условий поединка: пуля, направленная к корме, летит к мишени, которая движется ей навстречу, так что при равномерном движении судна недостаток скорости пули как раз восполняется встречной скоростью мишени; пуля же, направленная к носу, догоняет свою мишень, которая удаляется от пули со скоростью, равной избытку скорости пули.
В итоге обе пули по отношению к своим мишеням движутся совершенно так же, как и на корабле неподвижном.
Не мешает прибавить, что всё сказанное относится только к такому судну, которое идёт по прямой линии и притом с постоянной скоростью.
Рис. 2. Чья пуля раньше достигнет противника?
Здесь уместно привести отрывок из той книги Галилея, где был впервые высказан классический принцип относительности (книга эта, к слову сказать, едва не привела её автора на костёр инквизиции).
«Заключите себя с приятелем в просторное помещение под палубой большого корабля. Если движение корабля будет равномерным, то вы ни по одному действию не в состоянии будете судить, движется корабль или стоит на месте. Прыгая, вы будете покрывать по полу те же расстояния, что и на неподвижном корабле. Вы не сделаете вследствие быстрого движения корабля больших прыжков к корме, чем к носу корабля, хотя, пока вы находитесь в воздухе, пол под вами бежит к части, противоположной прыжку. Бросая вещь товарищу, вам не нужно с большей силой кидать её от кормы к носу, чем наоборот… Мухи будут летать во все стороны, не держась преимущественно той стороны, которая ближе к корме» и т. д.
Теперь понятна та форма, в которой обычно высказывается классический принцип относительности: «Все движения, совершающиеся в какой-либо системе, не зависят от того, находится система в покое или перемещается прямолинейно и равномерно».
На практике иной раз оказывается чрезвычайно полезным заменять движение покоем и покой движением, опираясь на классический принцип относительности. Чтобы изучить, как действует на самолёт или на автомобиль сопротивление воздуха, сквозь который они движутся, обычно исследуют «обращённое» явление: действие движущегося потока воздуха на покоящийся самолёт. В лаборатории устанавливают широкую аэродинамическую трубу (рис. 3), устраивают в ней ток воздуха и изучают его действие на неподвижно подвешенную модель аэроплана или автомобиля. Добытые результаты с успехом прилагают к практике, хотя в действительности явление протекает как раз наоборот: воздух неподвижен, а аэроплан или автомобиль прорезают его с большой скоростью.
Рис. 3. Разрез аэродинамической трубы ЦАГИ
Воздух засасывается в трубку пропеллером е через решётку (f – электродвигатель). Действие тока воздуха на аэроплан изучается с помощью приборов р, g, m. Подвес q – так называемые аэродинамические весы – уравновешивает давление воздушного потока
Читателю будет интересно узнать, что одна из крупнейших в мире аэродинамических труб устроена в Москве в Центральном аэрогидродинамическом институте (ЦАГИ). Она имеет восьмиугольную форму; длина её 50 м, а поперечник в рабочей части – 6 м. Благодаря таким размерам в ней умещается не уменьшенная лишь модель, а корпус настоящего аэроплана с пропеллером или целый автомобиль в натуральную величину. Более крупная аэродинамическая труба сооружена во Франции, её эллиптическое сечение имеет размеры 16 × 18 м.
Другой пример плодотворного применения классического принципа относительности беру из заграничной железнодорожной практики. В Англии и в Америке тендер[2] нередко пополняется водой на полном ходу поезда. Достигается это остроумным «обращением» одного общеизвестного механического явления, а именно: если в поток воды погрузить отвесно трубку, нижний конец которой загнут против течения (рис. 4), то текущая вода проникает в эту так называемую трубку Пито и устанавливается в ней выше уровня реки на определённую величину Н, зависящую от скорости течения. Железнодорожные инженеры «обратили» это явление: они двигают загнутую трубку в стоячей воде, и вода в трубке поднимается выше уровня водоёма. Движение заменяют покоем, а покой – движением.
Осуществляют это так: на станции, где тендер паровоза должен, не останавливаясь, запастись водой, устраивают между рельсами длинный водоём в виде канавы (рис. 4). С тендера спускают изогнутую трубу, обращённую отверстием в сторону движения. Вода, поднимаясь в трубе, подаётся в тендер быстро мчащегося поезда (рис. 4 вверху справа).
Рис. 4. Как паровозы в Америке на полном ходу набирали воду Между рельсами устраивался длинный водоём, в который погружалась из тендера труба
Вверху слева – труба Пито. При погружении её в текущую воду уровень в трубе поднимается выше, чем в водоёме
Вверху справа – применение трубы Пито для набора воды в тендер движущегося поезда
Как высоко может быть поднята вода этим оригинальным способом? По законам той отрасли механики, которая носит название гидродинамика и занимается движением жидкостей, вода в трубе Пито должна подняться на такую же высоту, на какую взлетело бы тело, подброшенное отвесно со скоростью течения воды; а эта высота (Н) определяется формулой:
где V — скорость воды, g — ускорение силы тяжести, равное 9,8 м в секунду за секунду (м/с2). В нашем случае скорость воды по отношению к трубе равна скорости поезда; взяв скромную скорость 36 км/ч, имеем У= 10 м/с; следовательно, высота поднятия воды: