An eminent philosopher has observed that "nothing can be more common or frequent than to appeal to the evidence of the senses as the most unerring test of physical effects. It is by the organs of sense, and by these alone, that we can acquire any knowledge of the qualities of external objects, and of their mutual effects when brought to act one upon another, whether mechanically, physically, or chemically; and it might, therefore, not unreasonably be supposed, that what is called the evidence of the senses must be admitted to be conclusive, as to all the phenomena developed by such reciprocal action.
"Nevertheless, the fallacies are numberless into which those are led who take what they consider the immediate results of sensible impressions, without submitting them to the severe control and disciplined analysis of the understanding."1
If this verdict is confessedly true with regard to many observations which we make on things immediately present to our senses, much more likely is it to be true with respect to conclusions which are not "the immediate results of sensible impressions," but are merely deduced by a process of reasoning from such impressions. And if the direct evidence of our senses is to be received with a prudent reserve, because of this possibility of error, even when we have no evidence of an opposing character, still more necessary is the exercise of caution in judging of facts assumed to have occurred at a period far removed from our own experience, and which stand in contradiction (at least apparent, primâ facie, contradiction) to credible historic testimony. Nay, the caveat acquires a greatly intensified force, when the testimony with which the assumed facts are, or seem to be, at variance, is no less a testimony than His who ordained the "facts," who made the objects of investigation; the testimony of the Creator of all things; the testimony of Him who is, from eternity to eternity, "Ὁ 'ΑΨΕΥΔΗΣ ΘΕΟΣ"!
I hope I shall not be deemed censorious in stating my fear that those who cultivate the physical sciences are not always sufficiently mindful of the "Humanum est errare." What we have investigated with no little labour and patience, what we have seen with our eyes many many times, in many aspects, and under many circumstances, we naturally believe firmly; and we are very prone to attach the same assurance of certainty to the inferences we have, bonâ fide, and with scrupulous care to eliminate error, deduced from our observations, as to the observations themselves; and we are apt to forget that some element of error may have crept into our actual investigations, and still more probably into our deductions. Even if our observations be so simple, so patent, so numerous, as almost to preclude the possibility of mistake in them, and our process of reasoning from them be without a flaw, still we may have overlooked a principle, which, though perhaps not very obvious, ought to enter into the investigation, and which, if recognised, would greatly modify our conclusions.
In this volume I venture to suggest such a principle to the consideration of geologists. It will not be denied that Geology is a science that stands peculiarly in need of being cultivated with that salutary self-distrust that I have above alluded to. Though a strong and healthy child, it is as yet but an infant. The objects on which its senses have been exercised, its τα βλεπομενα, are indeed plain enough and numerous enough, when once discovered; but the inferences drawn from them, its βεβαια, find their sphere in the most venerably remote antiquity, – an antiquity mensurable not by years or centuries, but by secula seculorum. And the dicta, which its votaries rest on as certitudes, are at variance with the simple literal sense of the words of God.
I am not assuming here that the Inspired Word has been rightly read; I merely say that the plain straightforward meaning, the meaning that lies manifestly on the face of the passages in question, is in opposition with the conclusions which geologists have formed, as to the antiquity and the genesis of the globe on which we live.
Perhaps the simple, superficial sense of the Word is not the correct one; but it is at least that which its readers, learned and unlearned, had been generally content with before; and which would, I suppose, scarcely have been questioned, but for what appeared the exigencies of geological facts.
Now while there are, unhappily, not a few infidels, professed or concealed, who eagerly seize on any apparent discrepancy between the works and the Word of God, in order that they may invalidate the truth of the latter, there are, especially in this country, many names of the highest rank in physical (and, among other branches, in geological) science, to whom the veracity of God is as dear as life. They cannot bear to see it impugned; they know that it cannot be overthrown; they are assured that He who gave the Word, and He who made the worlds, is One Jehovah, who cannot be inconsistent with Himself. But they cannot shut their eyes to the startling fact, that the records which seem legibly written on His created works do flatly contradict the statements which seem to be plainly expressed in His word.
Here is a dilemma. A most painful one to the reverent mind! And many reverent minds have laboured hard and long to escape from it. It is unfair and dishonest to class our men of science with the infidel and atheist. They did not rejoice in the dilemma; they saw it at first dimly, and hoped to avoid it.2 At first they believed that the mighty processes which are recorded on the "everlasting mountains" might not only be harmonized with, but might afford beautiful and convincing demonstrations of Holy Scripture. They thought that the deluge of Noah would explain the stratification, and the antediluvian era account for the organic fossils.
As the "stone book" was further read, this mode of explanation appeared to many untenable; and they retracted their adherence to it. To a mind rightly constituted, Truth is above every thing: there is no such thing as a pious fraud; the very idea is an impious lie: God is light, and in Him is no darkness at all; and that religion which can be maintained only by dissembling or denying truth, cannot proceed from "Him that is Holy, Him that is True," but from him who "is a liar, and the father of it."
Many upright and ardent cultivators of the young science felt that truth would be compromised by a persistence in those explanations which had hitherto passed current. The discrepancy between the readings in Science and the hitherto unchallenged readings in Scripture, became manifest. Partisans began to array themselves on either side; some, jealous for the honour of God, knew little of science, and rushed into the field ill-prepared for the conflict; some, jealous for science, but little conversant with Scripture, and caring less for it, were willing to throw overboard its authority altogether: others, who knew that the writings were from the same Hand, knew therefore that there must be some way of reconciling them, and set themselves to find it out.
Have they succeeded? If I thought so, I would not publish this book. Many, I doubt not, have been convinced by each of the schemes by which the discrepant statements have been sought to be harmonized. Each of them has had sufficient plausibility to convince its propounder; and, probably, others too. And some of them have attained a large measure of public confidence. Yet if any one of them is true, it certainly has not commanded universal assent. Let us examine how far they agree among themselves, who propose to reconcile Scripture and Science, "the Mosaic and the Mineral Geologies."
And first, it is, perhaps, right to represent the opinions of those who stand by the literal acceptation of the Divine Word. There have been some, indeed, who refuse to entertain the question of reconciliation, taking the high ground that, as the Word of God is and must be true, it is impious to set any evidence in competition with it. I cannot but say, my sympathies are far more with these than with those who, at the opposite pole of the argument, would make scientific deduction paramount, and make the Word go to the wall. But, then, we ought to be quite sure that we have got the very Word of God; and, so far from being impious, it seems highly proper and right, when conflicting evidence appears to flow out of what is indubitably God's work, to examine afresh the witnesses on both sides, that we may not make either testify what it does not.
Those good men who merely denounce Geology and geologists, I do not quote. There are the facts, "written and engraven in stones," and that by the finger of God. How can they be accounted for?
Some have recourse to the assumption that the natural processes by which changes in the earth's surface are now going on, may have operated in antediluvian times with a rapidity and power of which we can form little conception from what we are cognisant of. The Rev. J. Mellor Brown takes this ground, adducing the analogies of steam-power and electricity, as effecting in a few moments or hours, what formerly would have required several days or weeks to accomplish.
"God's most tremendous agencies may have been employed in the beginning of his works. If, for instance, it should be conceded that the granitic or basaltic strata were once in a state of fusion, there is no reason why we should not call in the aid of supposition to produce a rapid refrigeration. We may surround the globe with an atmosphere (not as yet warmed by the rays of the newly kindled sun) more intensely cold than that of Saturn. The degree of cold may have been such as to cool down the liquid granite and basalt in a few hours, and render it congenial to animal and vegetable life; while the gelid air around the globe may have been mollified by the abstracted caloric."3
A writer in Blackwood (xli. 181; xlii. 690), in like manner, adheres to the literal sense of Genesis and the Decalogue, and alludes to "the great agencies – the magnetic, electrical, and ethereal influences – probably instrumental in all the phenomena of nature," as being far more powerful than is generally suspected.
Mr. Macbrair – who does not, however, appear, from the amount of his acquaintance with science, competent to judge of the physical evidence – supposes stratification to have proceeded with immense rapidity, because limestone is now deposited in some waters at the rate of six inches per annum. Because a mass of timber, ten miles in length, was collected in the Mississippi, in thirty-eight years, he considers that a "capital coal field" might be formed in a single century. Alluvial strata are mud lavas ejected from volcanoes. The whole difficulty of fossil remains is got rid of by ignoring the distinctions of species, and assuming that the ancient animals and the recent ones are identical. The Pterodactyle and the Plesiosaurus he does not allude to.4
According to Dr. Ure, – "The demiurgic week … is manifestly composed of six working days like our own, and a day of rest, each of equal length, and, therefore, containing an evening and a morning, measured by the rotation of the earth round its axis… Neither reason nor revelation will justify us in extending the origin of the material system beyond six thousand years from our own days. The world then received its substance, form, and motions from the volition of the Omnipotent."
His theory of the stratification extends over the whole antediluvian era. He supposes that successive irruptions of the central heat broke up the primitive strata and deposited the secondary and tertiary. "The basaltic or trap phenomena lead to the conclusion that such upheavings and subversions were not confined to one epoch of the antediluvian world, but that, coeval with its birth, they pervaded the whole period of its duration… The Deluge – that universal transflux of the ocean – was the last and greatest of these terraqueous convulsions."5
Another class of this school of interpreters refers the stratification of the earth, either to the deluge alone, or to that convulsion conjoined with the one which is considered to have taken place on the third day of the Mosaic narrative. Perhaps the most eminent writer of this class is Mr. Granville Penn, whose opinions may be thus condensed.
He supposes that this globe has undergone only two revolutions. The first was the violent rupture and depression of the surface to become the bed of the sea, and the simultaneous elevation of the other portion to become dry land, – the theatre of terrestrial existence. This first revolution took place before the creation of any organized beings. The second revolution was at the Noachic Flood, when the former bed of the sea was elevated to become the dry land, with all its organic accumulations of sixteen centuries, while the former land was correspondingly depressed and overflowed. "The earth must, therefore, necessarily exhibit manifest and universal evidences of the vast apparent ruin occasioned by its first violent disruption and depression; of the presence and operation of the marine fluid, during the long interval which succeeded; and of the action and effects of that fluid in its ultimate retreat."6
Mr. Fairholme7 so nearly agrees with the above, that I need not quote his opinions in detail.
Another class, represented by Dr. Young and the Rev. Sir W. Cockburn, Dean of York, have maintained with considerable power, backed by no mean geological knowledge, that the deluge is a sufficient vera causa for the stratification of the globe, and for the fossilization of the organic remains.
Dr. Young supposes that an equable climate prevailed all over the globe in the antediluvian period. "Were the highest mountains transferred to the equatorial regions, the most extensive oceans removed towards the poles, and fringed with a border of archipelago, – while lands of moderate height occupied most of the intermediate spaces, between these archipelagos and the equatorial mountains; then a temperature, almost uniform, would prevail throughout the world." This "perpetual summer" would account for the prodigious quantities of animal and vegetable remains: – every region teemed with life.
At the Flood, "the bed of the ocean must have been elevated, and the dry land at the same time depressed," an expansive force acting from below to heave up the ocean's bed. To this agency are attributed the vast masses of granite, gneiss, basalt, and other rocks of igneous origin, which seem to have been forced upwards in a state of fusion, into their present lofty stations. The ancient bed of the ocean may have consisted of numerous layers of sand, clay, lime, and other substances, including corals and marine shells, – to a certain degree consolidated into rocks. By the progressive rising of the waters and the currents so made, fresh materials would be conveyed to the depths of the ocean, so that the magnesian limestone, the saliferous beds, the lias, &c., would be deposited.8
The Dean of York, in like manner, considers that the convulsions produced by the Deluge, are sufficient to account for all the stratification and fossil remains. That the gradual rise of the waters, and their penetration into the recesses of the rocks, would cause successive volcanic eruptions; the earlier of which would inclose marine fishes and reptiles; then others in turn, the pachyderms and great reptiles of the plains; and, finally, the creatures more exclusively terrestrial. That these repeated heavings of mighty volcanoes raised great part of what had been the bottom of the sea, above its level, and that hence the present land had been for sixteen centuries under water. That the animals which entered the ark, were not selected till after many species had already perished in the earlier convulsions, and hence the number of extinct species now exhumed.9
My reader will kindly bear in mind that I am not examining these opinions; I adduce them as examples of the diversity of judgment that still prevails on a question which some affect to consider as settled beyond the approach of doubt.
A totally different solution of the difficulty has been sought in the hypothesis, that the six "days" of the Inspired Record signify six successive periods of immense though of undefined duration. This opinion is as old as the Fathers at least,10 and not a few able maintainers of it belong to our own times. It has been put forth, however, with most power, by a late lamented geologist, whose wonderful vigour of description and felicity of illustration, have done, perhaps, more than the efforts of any other living man, to render his favourite science popular.
Perhaps I can scarcely set his views in a more striking light than he himself has done in his own peculiarly graphic report of a conversation, which he sustained with some humble inquirers in the Paleontological Gallery of the British Museum.
"I last passed," says Mr. Hugh Miller, "through this wonderful gallery at the time when the attraction of the Great Exhibition had filled London with curious visitors from all parts of the empire; and a group of intelligent mechanics, fresh from some manufacturing town in the midland counties, were sauntering on through its chambers immediately before me. They stood amazed beneath the dragons of the Oolite and Lias; and, with more than the admiration and wonder of the disciples of old, when contemplating the huge stones of the Temple, they turned to say, in almost the old words, 'Lo! master, what manner of great beasts are these?' 'These are,' I replied, 'the sea-monsters and creeping things of the second great period of organic existence.' The reply seemed satisfactory, and we passed on together to the terminal apartments of the range appropriated to the tertiary organisms. And there, before the enormous mammals, the mechanics again stood in wonder, and turned to inquire. Anticipating the query, I said, 'And these are the huge beasts of the earth, and the cattle of the third great period of organic existence; and yonder in the same apartment, you see, but at its farther end, is the famous fossil Man of Guadaloupe, locked up by the petrifactive agencies in a slab of limestone.' The mechanics again seemed satisfied; and, of course, had I encountered them in the first chamber of the suite, and had they questioned me respecting the organisms with which it is occupied, I would have told them that they were the remains of the herbs and trees of the first great period of organic existence. But in the chamber of the mammals we parted, and I saw them no more."11
A large and influential section of the students of Geology regard this hypothesis as untenable. Generally they may be described as holding that the history which is recorded in the igneous and fossiliferous strata does not come into the sacred narrative in any shape. As, however, that narrative commences with "the beginning," and comes down to historic times, the facts so recorded must find their chronology within its bounds. Their place is accordingly fixed by this school of interpretation between the actual primordial creation (Gen. i. 1), and the chaotic state (ver. 2).
Let us hear an able and eloquent geologist, Professor Sedgwick, on the hypothesis just mentioned of the elongation of the six days: —
"They [certain excellent Christian writers on the subject of Geology] have not denied the facts established by this science, nor have they confounded the nature of physical and moral evidence; but they have prematurely (and, therefore, without an adequate knowledge of all the facts essential to the argument) endeavoured to bring the natural history of the earth into a literal accordance with the Book of Genesis; first, by greatly extending the periods of time implied by the six days of creation; and secondly, by endeavouring to show that under this new interpretation of its words, the narrative of Moses may be supposed to comprehend, and to describe in order, the successive epochs of Geology. It is to be feared that truth may, in this way, receive a double injury; and I am certain that the argument just alluded to has been unsuccessful." – "We must consider the old strata of the earth as monuments of a date long anterior to the existence of man, and to the times contemplated in the moral records of his creation."12
Many able theologians, who, though well acquainted with natural science, can scarcely be considered as geologists, have been satisfied with this solution of the problem.
Thus Sharon Turner: —
"What interval occurred between the first creation of the material substance of our globe, and the mandate for light to descend upon it, whether months, years, or ages, is not in the slightest degree noticed [in the Sacred Record]. Geology may shorten or extend its duration, as it may find proper."13
Thus the present Archbishop of Canterbury: —
"We are not called upon to deny the possible existence of previous worlds, from the wreck of which our globe was organized, and the ruins of which are now furnishing matter for our curiosity."14
Thus Dr. Chalmers: —
"The present economy of terrestrial things was raised about six thousand years ago on the basis of an earth then without form and void; while, for aught of information we have in the Bible, the earth itself may before this time have been the theatre of many lengthened processes, the dwelling-place of older economies that have now gone by, but whereof the vestiges subsist even to the present day, both to the needless alarm of those who befriend Christianity, and the unwarrantable triumph of those who have assailed it."15
Thus Dr. Harris: —
"The first verse of Genesis was designed to announce the absolute origination of the material universe by the Almighty Creator; and, passing by an indefinite interval, the second verse describes the state of our planet immediately prior to the Adamic creation; and the third verse begins the account of the six days' work."16
Thus Mr. Gray: —
"That an antecedent state of the earth existed before the recorded Mosaical epoch, will clearly come out to view by the consideration of the terms used in the second verse. There was at that period, according to the express Mosaic record, anterior to the six days' reduction into order, existing earth and existing water."17
Probably the majority of our ablest geologists, men who have devoted their lives to the study and elucidation of geological phenomena, are to be found among those who advocate this scheme of reconciling those phenomena with the statements of the Holy Scriptures. Thus one of the earliest cultivators of the science, the Rev. Dr. Conybeare: —
"I regard Gen. i. 1 as an universal proposition, intended to contradict all the heathen systems which supposed the eternity of matter or polytheism; and ver. 2 I regard as proceeding to take up our planet in a state of ruin from a former condition, and describing a succession of phenomena effected in part by the laws of nature (which are no more than our expression of God's observed method of working), and in part by the immediate exercise of Divine power in directing and creating."18
Dr. Hitchcock, President of Amherst College, U.S., gives in his adhesion to this principle. After summing up the evidence in favour of the earth's high antiquity, he inquires, "Who will hesitate to say that it ought to settle the interpretation of the first verse of Genesis, in favour of that meaning which allows an intervening period between the creation of matter and the creation of light? This interpretation of Genesis is entirely sufficient to remove all apparent collision between Geology and revelation. It gives the geologist full scope for his largest speculations concerning the age of the world. It permits him to maintain that its first condition was as unlike to the present as possible, and allows him time enough for all the changes of mineral constitution and organic life which its strata reveal. It supposes that all these are passed over in silence by the sacred writers, because irrelevant to the object of revelation; but full of interest and instruction to the men of science who should afterwards take pleasure in exploring the works of God.
"It supposes the six days' work of creation to have been confined entirely to the fitting up the world in its present condition, and furnishing it with its present inhabitants. Thus, while it gives the widest scope to the geologist, it does not encroach upon the literalities of the Bible; and hence it is not strange that it should be almost universally adopted by geologists, as well as by many eminent divines."19
Dr. Pye Smith, accepting the immense undefined interval between the event of the first verse, and the condition chronicled in the second, held the somewhat remarkable opinion that the term "earth" in that verse, and throughout the whole description of the six days, is "designed to express the part of our world which God was adapting for the dwelling of man and the animals connected with him." And that portion he conceived to have been "a part of Asia, lying between the Caucasian ridge, the Caspian Sea, and Tartary on the north, the Persian and Indian Seas on the south, and the high mountain ridges which run at considerable distances on the eastern and western flank."
The whole of the six days' creation was confined, on this hypothesis, to the re-stocking, with plants and animals, of this limited region after an inundation caused by its subsidence. The flood of Noah was nothing more than a second overflowing of the same region, by "an elevation of the bed of the Persian and Indian Seas, or a subsidence of the inhabited land towards the south."20
The author of "The Protoplast" has made the very original suggestion, that the geological periods may have occurred during the paradisaical condition of man, which he thinks was of an indefinitely protracted duration, human chronology commencing at the Fall.
"We have no data in Scripture from which to gather certain information, and Adam may have lived unfallen one day, or millions of years." The years of the first man's mortal life began to be reckoned when his immortality ceased. He was nine hundred and thirty years old:21 he had been nine hundred and thirty years gradually decaying, slowly dying.
"It may, indeed, be said that no man could have survived those convulsions of nature, of which traces have been discovered in the earth's crust. I would reply to this; – First, that we have no reason to suppose that these changes affected the whole globe at once; they may have been partial and successive; and the world's Eden may have been a spot peculiarly exempted from their influence. Secondly, that Adam's body before the fall was not constituted as ours now are; it was incorruptible and immortal: physical phenomena could have had no deleterious effect upon him." "Why should we find any difficulty in supposing that the geological changes which appear to have passed upon the globe, after its creation, and before its curse, were to the first man sources of ever-renewing admiration, delight, and advantage?
"Inclining to the belief that both the animal fell and the animal curse were considerably antecedent to the sin of Adam, I see no difficulty in the admission, that animal death may also have prevailed prior to that event."22
While all those writers whose opinions I have cited, feel it more or less incumbent on them to seek a reconciliation between the words of Inspiration and the phenomena of Geology, there are not a few who decline the task altogether. Some eminent in science seem, by their entire avoidance of the question, to allow judgment to go by default. Others more boldly deny that the two can be accommodated.
Mr. Babbage appears to think the archaic Hebrew so insuperably obscure a language, that no confidence can be put in our constructions of its statements; an opinion which, if true, would make the revelation of God to us, with all its glorious types, and promises, and prophecies, more dubious than the readings of Egyptian papyri, or the decipherment of Assyrian cuneiforms.
On this notion, however, Dr. Pye Smith observes: – "All competent scholars, of whatever opinions and parties they may be in other respects, will agree to reject any imputation of uncertainty with respect to the means of ascertaining the sense of the language."
Others find no difficulty in understanding the Hebrew, but in believing it.
Professor Baden Powell sees in the plain, unvarnished narrative of the Holy Spirit, only myth and poetry: it "was not intended for an historical narrative" at all; and he thinks (I hope incorrectly), that there is a pretty general agreement with his views.
"Most rational persons," he says, "now acknowledge the failure of the various attempts to reconcile the difficulty [between Geology and Scripture] by any kind of verbal interpretation; they have learnt to see that the 'six days of thousands of years' have, after all, no more correspondence with anything in Geology than with any sane interpretation of the text. And that the 'immense period at the beginning,' followed by a recent literal great catastrophe, and final reconstruction in a week, is, if possible, more strangely at variance with science, Scripture, and common sense. Yet while they [viz. the 'rational persons,'] thus view the labours of the Bible-geologists as fruitless attempts, they often do not see – ," &c. &c.23
Of course this gives up the authority of Scripture altogether; and, consistently enough, the author is severe upon the prevalent "indiscriminate and unthinking Bibliolatry." "If in any instance the letter of the narrative or form of expression may be found irreconcilably at variance with physical truth,24 we may allow, to those who prefer it, the alternative of understanding them either as religious truths, represented under sensible images, or as descriptions of events according to the preconceptions of the writers, or the traditions of the age."
The author of "Vestiges of the Natural History of Creation" propounds a theory of organic origin much more worthy of God, than that "mean view," which supposes Him "to come in on frequent occasions with new fiats or special interferences." Coolly bowing aside His authority, this writer has hatched a scheme, by which the immediate ancestor of Adam was a Chimpanzee, and his remote ancestor a Maggot!
In reviewing this array of opinions, is there not sufficient ground for regarding with caution the claim to certainty which has been boldly put forth for the conclusions of Geology? It cannot be denied that there is here room for a very considerable amplitude of choice among discordant hypotheses. All cannot be true, unless on the principle which was claimed for the Church by the Council of Trent – "Cum enim ecclesia duarum expositionum ubertate gaudeat, non esse eam ad unius penuriam restrigendam!" I do not for a moment intend to put all these hypotheses and assumptions on the same level. They vary widely as to their tenableness, and as to their prevalence. But if we leave out of view the fears of those who, from insufficient acquaintance with science, are not competent to adjudicate on its positions, and those who despise or decline Biblical authority altogether on this subject, we have still a somewhat wide range to choose from. Shall we accept the antediluvian, or the diluvian stratification? the six ages or the six days of creation? the irruptions of internal fire that occurred chiliads before Man was made– those during his protracted paradisaic state, or those at the time of the Flood? – the extension of the Mosaic record to universal nature, or its limitation to a region of south-western Asia?
I am not blaming, far less despising, the efforts that have been made for harmonizing the teachings of Scripture and science. I heartily sympathise with them. What else could good men do? They could not shut their eyes to the facts which Geology reveals: to have said they were not facts would have been simply absurd. Granting that the whole truth was before them – the whole evidence – they could not arrive at other conclusions than those just recorded; and, therefore, I do not blame their discrepancy inter se. The true key has not as yet been applied to the wards. Until it be, you may force the lock, but you cannot open it. Whether the key offered in the following pages will open the lock, remains to be seen.
"You shall well and truly try, and a true deliverance make… and a true verdict give, according to the evidence." —
(Jury Oath.)
A High Court of Inquiry has been sitting now for a good many years, whose object is to determine a chronological question of much interest. It is no less than the age of the globe on which we live. Counsel have been heard on both sides, and witnesses have been called, and most of the judges have considered that an overwhelming preponderance of testimony is in favour of an immeasurably vast antiquity. A single Witness on the other side, however, has deposed in a contrary sense: and, though he has said but little, some of those who have heard the cause attach such weight to his testimony, that they do not feel satisfied to let it be overborne. Counsel on the former side have, indeed, cross-examined the Witness, and dissected his testimony with much skill, and they contend that what he said has been misunderstood by the minority; and that, as his words may at least bear a sense which would not contradict those of the opposing witness, the clear, copious, and unvarying deposition previously made, ought to command the verdict of the Court.
The minority are silenced, but not satisfied; they know not how to give up the Witness on whose veracity they have been wont to rely; but they are unable to answer the arguments brought against him.
Counsel for the Brachy-chronology speaks. "We respectfully ask the Court for another hearing. Will our learned brother permit his witness briefly to recapitulate his testimony, and we will endeavour to examine it once more; for we think we shall be able to detect some flaw in it?" Rule granted.
WITNESS FOR THE MACRO-CHRONOLOGY.
The following, then, is the substance of what the witness deposes. He is not a living witness; his testimony, therefore, is not oral, but written – lithographed, in fact. It consists of a number of documents, which are couched in a language and character not to be understood without some previous study, but yet very capable of translation – very clear and unmistakeable. The following, I say, is a condensed summary of the leading points.
If a curious person had watched the process of making the excavations that were preliminary to the boring of the Thames Tunnel, he would have observed that the labourers exposed successive layers of earth, differing much in colour, consistency, and general character. First, an accumulation of soil, consisting of decayed vegetable and animal matter, mingled with broken pottery, and other rubbish of man's production, was removed; then a layer of sand, gravel, and river mud; then a bed of reddish clay; then a layer of clay, mixed with silt or fine sandy mud; then a thin layer of silt, much filled with shells; then a stratum of stiff blue clay; then a layer of clay of more mottled character, containing a portion of silt, and some shells; then a stratum of very firm clay, so solid that it required to be broken with wedges; then a bed of gravel and sand of a green colour; and finally, a similar layer, but of a coarser texture.
In the course of the hundred feet or so of perpendicular depth thus exposed, he would have seen a succession of layers, apparently deposited upon one another. But as yet he would have formed a very inadequate notion of the stratification of the earth's crust.
With the knowledge thus gained, however, let him now make a little excursion into Hertfordshire; we will suppose at the time when the cuttings for the Great Northern Railway were being made. When he came near Cheshunt, he would see that the London clay, which he found underlying the Thames, crops out, or disappears by the stratum coming obliquely to the surface. He would see, however, another bed of clay – the plastic clay – beneath this, which now forms the superficial stratum, and continues to do so, till he gets beyond Hertford. There this stratum crops out; and the chalk, which for some time he has seen to underlie the plastic clay, now comes to the surface.
Business or pleasure calls him to Bridlington on the Yorkshire coast; and he determines to make a pedestrian tour across the diameter of England to Whitehaven. He soon recognises the chalk, which constitutes the Wolds, and rises to about 800 feet above the sea level. Below its escarpment he traces the Kimmeridge clay, the uppermost of a series of strata more than 2,000 feet in thickness, that constitute the Oolitic system – including, among others, the coralline oolite, the calcareous grit, the cornbrash, thin, but rich in fossils; the lower sandstone and coal of the Cleveland hills, the alum shale, the marlstone, and the lower lias shale.
Then comes a stratum of the saliferous system or the new red sandstone, with the red marls, perhaps not much short of a thousand feet deep. Below them the observer finds the strata of the magnesian limestone formation, for nearly 400 feet, resting on the great coal formations of vast depth. Of these the coal field of the West Riding is not less than 4,000 feet in depth, and beneath it lie the millstone grit, and the mountain limestone, 2,500 feet more, the latter displayed in noble grandeur on the faces of those wall-like precipices that inclose the romantic dales of the Swale and the Ure, and that subsequently tower in magnificent altitude on the sides of Pennygant and Ingleborough.
On the western escarpment of the Pennine ridge, just as the traveller is entering Westmoreland, he would detect the bottom of the limestone; and here he would have an opportunity of seeing, what is rare in these parts, a stratum of the old red sandstone, lying between the former and the slaty rocks of the Cumbrian formations. And here at length, in the wild and magnificent scenery of these mountains, he sees the primitive and transition series, the greenstone, the sienite, and the granite, each of which is discernible in succession on the face of one or other of the lofty Fells of Cumberland.
Our traveller now comes home, and, musing on what he has seen, counts up some thirty or more distinct strata lying in regular succession one on another. But he has not seen all the world, nor even all England; but he reads the results of many independent observations, and finds that while, for the most part, the strata which he has seen are common to the whole surface of the globe, and while the order of their superposition is invariable everywhere, others are in some parts added, while perhaps some of those which he has observed are locally absent. Thus he is able to form a more distinct idea of the stratification of the earth's crust as a whole. It is composed of about forty distinct formations, generally increasing in thickness as we go downwards, so that the whole cannot be much less than ten miles in depth, supposing them in any locality to be all present, and to be lying in the horizontal plane.
Mathematicians have satisfactorily determined that the mean density of the globe is about five-and-a-half times that of water, or about twice that of granite, a fact inconsistent with any other supposition than that the interior is occupied by substances maintained in a fluid state by intense heat. The lowest point that has yet been patent to human observation is occupied by the granite, a compound rock, which bears evident marks of having been once in a state of fusion, and of having cooled slowly, and that under immense pressure, contracting and crystallizing as it parted with its heat. There is every reason to believe that the granite is not defined at its inferior surface, but that it merges into the molten mass, probably still solidifying.
After the outer portion of the granite had cooled sufficiently to become solid, there is evidence that it was covered by water, agitated by powerful currents, and probably in a heated state. The action of these currents disintegrated the rock, and deposited the constituent substances at the bottom of the sea – on the surface, and in the hollows, of the granite. For there is reason to think that the contraction of the primitive rock in the process of cooling, produced irregular undulations or crumplings of the surface, and frequent fractures and dislocations, elevating some parts and depressing others. The gneiss, the mica-schist, and the clay-slate, which are found immediately overlying the granitic rock in strata of vast thickness, are but the components of granite, separated and rearranged. "If we imagine common granite coarsely pounded, and thrown into a vessel of water, it will arrange itself at the bottom of the vessel in a condition very much like that of gneiss, which is indeed nothing else than stratified granite. If the water in which the pounded rock is thrown is moving along at a slow rate, and the clayey portion of the granite, called felspar, happens to be somewhat decomposed, as it often is, then the felspar (which is so truly clay that it makes the best possible material for the use of the potteries) and the thin shining plates of mica, will be carried further by the water than the lumps of white quartz or flint sand, which, with the other two ingredients, made up the granite; and the two former will be deposited in layers, which, by passing a galvanic current through them, would in time become mica-schist. If the mica were absent, or if the clay were deposited without it, owing to any cause, then a similar galvanic current would turn the deposit into something like clay-slate."25
The deposition of these strata, being formed out of granite, supposes the pre-existence of that rock; and as they occur in vast thicknesses, even of many thousand feet, then separation, deposition, and reconsolidation must have occupied, however rapidly we may suppose the processes to have been accomplished, considerable periods of time.
In these lower rocks, no trace of organic remains has been found. The shoreless ocean that covered the cooling surface of the earth's crust, harboured no polype or sponge, no rhizopod or infusorium, and the angles and clefts of the granite were fringed by no fucus, or conferva: all was waste and void. And if certain parts were elevated above the waters, the bleak and barren points were not clothed with grass, or moss, or even a lichen, and no animal wandered over their ridges. Or, if such did exist, either in land or water, all vestiges of their presence have been destroyed by the agency of the intense heat that subsequently prevailed.
But, in the numerous strata that overlie the rocks of granitic origin, there are found, in varying abundance, proofs that, when they were deposited, the surface of our earth had become the abode of organic life. Zoophytes lived in the ocean, some of which were engaged in secreting lime from the water, and depositing it in coral-reefs; stalked and jointed Star-fishes waved like lilies of stone from the submerged rocks; Sea-worms twined over the mud; mailed Crustaceans swam to and fro; and Mollusks, both bivalve and univalve, crawled over the ledges or reposed in the crevices. The remains of these occur in the Silurian rocks that lie immediately on the primitive granitic formations of Cumberland and North Wales. The construction of the coral-reefs of that deposit, in particular, must have occupied a lengthened period, continuing to go on, "month after month, year after year, century after century, until at length the depth changed, in which they could most conveniently live, or, owing to some other cause, their labours were brought to a close, and they disappeared from amongst existing species."26
Not a single species, or even a single genus of those early strata, is identical with any that exists now. The Coral-polypes, for instance, while allied to ours, are quite distinct from them, though endowed with similar powers and habits, so that we may reason from analogy on the laws of their deposits. The Trilobites were allied to the tiny water-fleas (Entomostraca) of the present day: like the Oniscidæ (wood-lice, buttons, &c.) of our gardens, they had the habit of rolling their plated bodies into a ball. These are found in great numbers, their remains often heaped on one another. The Mollusca of those seas were chiefly of the class Cephalopoda– one of the least populous now-a-days, but then existing in vast number and variety; the Brachiopoda, Conchifera, and Gastropoda, were, however, well represented also.
Such were the inhabitants of the sea during the Silurian period, in which a series of solid deposits were made, the aggregate, probably, exceeding 50,000 feet in thickness. Each deposit, though not more than a few inches in depth, "is provided with its own written story, its sacred memoranda, assuring us of the regularity and order that prevailed, and of the perfect uniformity of plan."
Over all these, however, we see laid the strata of the Devonian system, especially the old red sandstone, which in some places attains a thickness of 10,000 feet. It is composed of a coarse agglomeration of broken fragments of the old granitic rocks, rolled and tossed about, apparently by the ever-breaking waves of shingle-beaches, until the hardest stones are worn into rounded pebbles by long and constant attrition.
An examination of the old red sandstone, as is seen in Herefordshire, will aid us in forming a notion of the time required for its production. It is composed of fragments obtained by the disintegration of more ancient rocks, which, by a long process of rolling together in a breaking sea, or in the bed of a rapid current, have lost all their angles. The pebbles, thus worn, have at length settled, – the heaviest lowest, – and the whole has been consolidated into firm rock. "In many places," says Dr. Pye Smith, "the upper part of this vast formation is of a closer grain, showing that it was produced by the last and finest deposits of clayey and sandy mud, tinged, as the whole is, with oxides and carbonates of iron, usually red, but often of other hues. But, frequently, the lower portions, sometimes dispersed heaps, and, sometimes, the entire formation, consist of vast masses of conglomerate, the pebbles being composed of quartz, granite, or some other of the earliest kinds; and thus showing the previous rocks, from whose destruction they have been composed. Let any person first acquire a conception of the extent of this formation, and of its depth, often many hundreds, and, sometimes, two or three thousand feet; (but such a conception can scarcely be formed without actual inspection;) then let him attempt to follow out the processes which the clearest evidence of our senses shows to have taken place; and let him be reluctant and sceptical to the utmost that he can, he cannot avoid the impression that ages innumerable must have rolled over the world, in the making of this single formation."27
Here, Fishes are added to the Invertebrate Animals. A sort of Shark with the mouth terminal, instead of beneath the head, was the earliest representative of this class. But closely following on this, were some curious species, enveloped in plate mail, and remarkable for the singularity of their forms, as the Cephalaspis and the Pterichthys.
This great period passed away, and was succeeded by that of the Carboniferous deposits, indicative of a vast change in the physical character of the earth's surface and atmosphere. This change of character may be briefly summed up as consisting of an immense abundance of lime in the ocean, and of an equally vast charge of carbonic acid in the atmosphere.
Strata of limestone, 2,500 feet in thickness, were accumulated in the ocean by the labours of Coral-polypes, allied to, but totally distinct from, those which had previously existed in the primary system. On the floor of a shallow sea, which then occupied the middle of what is now England, the coral reefs rose perpetually towards the day, atom by atom, the strata on which they were founded slowly and steadily sinking ever to a lower level, while successive generations of the industrious zoophytes wrought upwards, to maintain their position within reach of the light and warmth. What period of time was requisite for the aggregation of coral structure to the perpendicular thickness of 2,500 feet?
While this was going on, other Invertebrata were living in the shallow seas, mostly differing from the older species, which had become by this time extinct. Encrinites and Sea-urchins existed; some Foraminifera were astonishingly abundant; the Cephalopoda and the Brachiopoda presented a vast variety of species; and about seventy sorts of Fishes, mostly Sharks, characterised the age.
On the coral limestone lies a sort of conglomerate, known as the millstone grit; and on this is laid that source of Britain's eminence, the coal. The coal measures of South Wales are estimated at 12,000 feet in thickness. The profusion of vegetable life that must have combined to make the coal in these, has no parallel in this age; no, not in the teeming forests of South America, or the great isles of the Oriental Archipelago. The circumstances which favoured this enormous development of plants, seem never to have been repeated in subsequent ages, since the coal measures which are found in the later strata are thin and inconsiderable, compared with those we are considering.
M. Adolphe Brogniart suggests that in this period, from some source or other, carbonic acid was generated in vast abundance; or, at least, that it existed in the air, in a far greater proportion than it does now; and it is singularly confirmatory of his view, that terrestrial animals, to which this gas is fatal, have left almost no traces of their existence, during the age of these vast forests – a circumstance otherwise strange and unaccountable.
"Those parts," says Mr. Ansted, "of the great carboniferous series which generally include the beds of coral, consist of muddy and sandy beds, alternating with one another, and with the coal itself. Some of them would appear to be of fresh-water, and some of marine origin; and they abound, for the most part, with remains of the leaves of Ferns and fern-like trees, together with the crushed trunks of these and other trees, whose substance may have contributed to form the great accumulations of bituminised and other vegetable carbon obtained from these strata.
"It is not easy to communicate such an idea of beds of coal as shall enable the reader to understand clearly the nature of the circumstances under which they may have been deposited, and the time required for this purpose. The actual total thickness of the different beds in England varies considerably in different districts, but appears to amount, in the Lancashire coal-field, to as much as 150 feet. In North America there is a coal-field of vast extent, in which there appears at least as great a thickness of workable coal as in any part of England; while in Belgium and France the thickness is often much less considerable, although the beds thicken again still further to the east.
"But this account of the thickness of the beds gives a very imperfect notion of the quantity of vegetable matter required to form them; and, on the other hand, the rate of increase of vegetables, and the quantity annually brought down by some great rivers, both of the eastern and western continents, is beyond all measure greater than is the case in our drier and colder climate. Certain kinds of trees which contributed largely to the formation of the coal, seem to have been almost entirely succulent, and capable of being squeezed into a small compass during partial decomposition. This squeezing process must have been conducted on a grand scale, both during and after the formation of separate beds; and each bed in succession was probably soon covered up by muddy and sandy accumulations, now alternating with the coal in the form of shale and grit-stone. Sometimes, trunks of trees caught in the mud would be retained in a slanting or nearly vertical position, while the sands were accumulating round them; sometimes the whole would be quietly buried, and soon cease to exhibit any external marks of vegetable origin.28
"To relate the various steps in the formation of a bed of coal, and the gradual superposition of one bed upon another, by which at length the whole group of the coal-measures was completed, would involve an amount of detail little adapted to these pages; and when it is remembered that the woody fibres, after being deposited, had to be completely changed, and the whole character of the vegetable modified, before it could be reduced to the bituminous, brittle, almost crystalline mineral now dug out of the earth for fuel, it will rather seem questionable whether the origin of coal was certainly and necessarily vegetable, than reasonable to doubt the importance of the change that has taken place, and the existence of extraordinary means to produce that change. Nothing, however, is more certain than that all coal was once vegetable; for in most cases woody structure may be detected under the microscope; and this, if not in the coal in its ordinary state, at least in the burnt ashes which remain after it has been exposed to the action of heat, and has lost its bituminous and semi-crystalline character. This has been too well and too frequently proved by actual experiment, to require more than the mere statement of the fact."29
An eminent practical geologist thus essays to guess the age of the coal-fields, and of the sandstone that underlies it.
"The great tract of peat near Stirling has demanded [for its formation] two thousand years; for its registry is preserved by the Roman works below it. It is but a single bed of coal. Shall we multiply it by 100? We shall not exceed, – far from it, – did we allow 200,000 years for the production of the coal-series of Newcastle, with all its rocky strata. A Scottish lake does not shoal at the rate of half a foot in a century; and that country presents a vertical depth of far more than 3,000 feet in the single series of the oldest sandstone. No sound geologist will accuse a computer of exceeding, if he allow 600,000 years for the production of this series alone. And yet what are the coal deposits, and what the oldest sandstone, compared to the entire mass of the strata?"30
The conjecture, that the whole of the vegetable material now constituting the coal, was the growth of the antediluvian centuries, and that it was floated away and deposited by the flood, is untenable. In not a few instances trunks are found broken, and worn by water-action; but the great mass warrants the conclusion that trees of vast dimensions and of close array – dense, majestic forests, such as now occur only in the most humid regions of the tropics – were submerged in their native abodes, lying where they fell, and where they have left the impressions, side by side, on the upper and under surfaces of the shale, of their delicate peculiarities of structure, which would have been totally obliterated, if the trees had been sea-borne and shore-rolled, as pretended. The result of a careful and minute examination of the phenomena of coal, by Mr. Binney, is, that the vegetable matter now forming coal had grown in vast marine swamps, subjected to a series of subsidences with long intervals of repose; that the trees, and perhaps smaller plants, were submerged under tranquil water, in the places of their growth; and that very inconsiderable portions, if any, of the beds, are owing to drifting.31
While the coal was in process of deposition, the sea was occupied with Invertebrata, not widely differing from those which had marked the previous eras.
Fishes, however, were advancing in development; and several new and strange forms, some of them of gigantic dimensions and formidable armature, were introduced. These were chiefly remarkable for their affinities with Reptiles (whence they are often called Sauroid Fishes); and one of them —Megalichthys– was famished with jaws of serried teeth, surpassing those of the crocodile. With these were associated other and more ordinary Fishes; and swarms of Sharks of many species, and varying much in size, roved through the sea, maintaining the same pirate character as their representatives of our modern seas – fierce, subtle, voracious, and powerful.
At this time, too, appeared the earliest Reptiles, chiefly of the Amphibia sub-class. Some of these are known only by their foot-prints; and the late Hugh Miller has graphically described the appearance of some of these, which, he met with marking the roof of a coal-mine, four hundred feet below the surface. These must have been Batrachia of large size, as the fore feet were thirteen inches apart across the breast.32 They will be alluded to again.
With these exceptions, remains of terrestrial animals are, as has already been observed, rare in this formation.
"Always distrust very plain cases: beware lest a snake suddenly start out upon you, in the shape of some concealed and utterly unexpected difficulty." —
Warren: Law Studies.
We have hitherto been considering the strata as if they had remained permanent when once deposited, subject to no change, save the successive superposition of other strata upon them. But this is very far from being true. Enormous displacements, upheavings, contortions, and fractures, are observed in the strata, which tell of mighty forces having been at work upon them after their formation. The explanation of these phenomena is due to the internal heat, which ever and anon seems to concentrate its action on some special point, seeking and finding vent for itself by some alteration in the already consolidated crust.
Sometimes, the mode of action has been the transmission of undulations through the crust, producing earthquakes, cracking and forcing apart strata already petrified, and bending and variously contorting those that have but partially become solid. Sometimes, the fiery impulse is sufficiently concentrated to break through the superincumbent materials, forcing a passage for the molten and incandescent rock, which then flows forth from the surface, penetrates into the cracks and fissures of the fractured strata, and frequently spreads into the hollows and over the summits of the latest formations.
It is owing to such causes as these, that we find the rocky layers so often inclined at various angles to the horizon, instead of being parallel to it, as they would be of course deposited; occasionally standing quite perpendicularly, and even to a small extent reversed. The outcropping of formations, the long lines of cliff running across a country in parallel series, ("crag and tail,") the dipping of strata from some central point or ridge, and the non-correspondence between the bottom of one stratum and the top of the underlying one, – are all phenomena of this sort of powerful action, which has been more or less energetic at all periods.
After the deposit of the Old Red Sandstone, the internal fire appears to have enjoyed a lull of its energy, if not a complete cessation, until the Coal Measures were complete. Then the long tranquility was again broken, and concussions so extensive and violent ensued, that hardly a single square mile of country can anywhere be found which is not full of fractured and contorted strata, the record of subterranean movements, which mostly occurred between the Carboniferous and the Premian deposits.
The effects of these convulsions were manifest in the changed relations of land and sea, existing continents and islands being dislocated, severed, and swallowed up, while others were elevated from the depths of the previous ocean.
It was from the wave-worn materials thus obtained from pre-existing strata, that the New Red Sandstone was consolidated. It consists chiefly of sand and mud, with few organic remains; and the hiatus thus found, in animals and vegetables, seems to be almost a complete one between the organisms of the preceding and the succeeding periods.
The most interesting traces of the earth's tenants during the New Red formation, consist of foot-tracks impressed by the progress of animals along the yielding mud between the ranges of high and low tide. They afford a remarkable example (not, I think, sufficiently dwelt on) of the extreme rapidity with which deposits were consolidated; since the tracks must have been made, and the material consolidated, during the few hours, at most, that intervened between the recess and the reflux of the tide; since, if the mud had not so soon become solid, the flow of the sea would have instantly obliterated such marks, as it does now on our shores.
The principal animal, whose foot-prints have been identified, was an enormous Frog (Labyrinthodon), as big as a hippopotamus, but apparently allied, in its serried teeth, and in the bony plates with which it was covered, to the Crocodiles, which were its associates.
It is curious that marks in the same material have chronicled the serpentine trail of a Sea-worm, the scratchings of a Crab, the ripple of the wavelets, and even the drops of a passing shower; the last revealing, by their margins, the direction of the wind by which the slanting rain was driven.