Научный редактор Игорь Иванов, канд. физ. – мат. наук
Редактор Полина Суворова
Руководитель проекта А. Шувалова
Корректоры И. Астапкина, Е. Сметанникова
Компьютерная верстка А. Фоминов
Арт-директор Ю. Буга
Иллюстрации на обложке и в блоке Р. Тавасиев
Фото автора на обложке И. Соловей
Фото художника на обложке Г. Собченко
© Попов С., 2019
© Тавасиев Р., иллюстрации, 2019
© ООО «Альпина нон-фикшн», 2019
Все права защищены. Данная электронная книга предназначена исключительно для частного использования в личных (некоммерческих) целях. Электронная книга, ее части, фрагменты и элементы, включая текст, изображения и иное, не подлежат копированию и любому другому использованию без разрешения правообладателя. В частности, запрещено такое использование, в результате которого электронная книга, ее часть, фрагмент или элемент станут доступными ограниченному или неопределенному кругу лиц, в том числе посредством сети интернет, независимо от того, будет предоставляться доступ за плату или безвозмездно.
Копирование, воспроизведение и иное использование электронной книги, ее частей, фрагментов и элементов, выходящее за пределы частного использования в личных (некоммерческих) целях, без согласия правообладателя является незаконным и влечет уголовную, административную и гражданскую ответственность.
Меня всегда удивляли фразы, в которых встречалось выражение «наука и культура». Звучит как «литература и культура» или «искусство и культура». Такое разделение и даже противопоставление лишено смысла, ведь, безусловно, наука – неотъемлемая часть современной культуры. Также меня всегда расстраивало противопоставление «двух культур» – гуманитарной и естественно-научной, о котором писал еще Чарльз Сноу в своей знаменитой работе. Кажется, что такое разделение – а оно до сих пор заметно – основано в первую очередь на взаимном непонимании, свойственном многим людям и с той и с другой стороны. Чтобы лучше понять друг друга, надо больше общаться. Отчасти предлагаемая читателю книга является попыткой такого общения. Соответственно, основной ее адресат – человек, считающий себя в большей степени «гуманитарием», что в первую очередь подразумевает нелюбовь ко «всяким формулам».
В некотором смысле книга состоит из трех частей, и важнейшая из них связана с набором иллюстраций, созданных Ростаном Тавасиевым. С самого начала идея проекта вращалась вокруг визуальных образов, которые могли бы по-своему выразить роль математики в познании и описании мира, а также ее связь с другими подходами. Поэтому иллюстративный ряд – не просто дополнение к тексту, а самостоятельная сущность, у которой есть создатель, своими методами выражающий собственную точку зрения на мысли и образы, представленные в основной – текстовой – части книги.
В 15 главах, составляющих эту часть, формул практически нет. Целью был разговор о математическом методе описания мира с точки зрения ученого, который им активно пользуется, но сам его не развивает, создание некоего внятного образа, подкрепленного разнообразными аналогиями (с которыми, разумеется, можно не соглашаться) и примерами, которые я брал в первую очередь из физики и астрофизики. Мне хотелось, чтобы читатель понял, что математика – не способ все запутать, а единственная возможность понять очень и очень многое из того, что мы узнали и узнаем о мире, в первую очередь в результате физических исследований. Кроме того, математика – метод не только (и не столько) представления и описания, но еще и исследований природы, поскольку оказалось, что множество новых результатов удается вначале получить с помощью анализа уравнений (а иногда даже создания нового математического аппарата), а эксперимент или наблюдения впоследствии их лишь подтверждают.
Однако многим продвинутым читателям покажется, что слов недостаточно, – надо и уравнения выписывать. Рассказывать о математических методах в физике без помощи формул – все равно что говорить о живописи без иллюстраций или показа картин. Поэтому появилась третья часть книги – приложения, куда вынесен ряд примеров, призванных непосредственно продемонстрировать, как математика применяется в физике и астрономии. Там формулы присутствуют в большом количестве, правда, сложных выражений среди них нет. Фактически приложения – это ряд независимых научно-популярных статей разного объема, посвященных самым разным методам, процессам и объектам. Стандартного курса нетехнического вуза по высшей математике и физике (или даже естествознанию) будет вполне достаточно, чтобы во всем разобраться. Не возникнет сложностей и у старшеклассников из физико-математических школ или астрономических кружков.
Особняком стоят два последних больших приложения, одно из которых посвящено гипотезам в астрофизике, а второе – практической пользе фундаментальных исследований вообще и астрономических в частности. Читатель, все-таки желающий формул избежать, может, пропустив первые девять приложений, смело браться за два последних, не боясь столкнуться с «математическими монстрами».
Предложение Сергея Попова иллюстрировать книгу про математические формулы застало меня врасплох. Как иллюстрировать то, чего не понимаешь? Но я решил довериться удивительному дару Сергея Борисовича объяснять непостижимое.
В школе мир цифр казался ужасно скучным. Клетку в тетради воспринимал как средство ограничения свободы воображения. И боролся за эту свободу заполняя тетрадки рисунками. Рисовал и в учебниках, визуализируя условия задач и украшая буденновскими усами портреты великих математиков.
И вот теперь мои рисунки снова встретились с математикой на страницах этой книги. Подозреваю, что стал тем максимально не подготовленным «гуманитарием», на котором автор тестировал свой текст. Если поймет этот художник, то, вероятно, и другие тоже поймут.
Издательство попросило пояснить в этом коротком вступлении, как устроены иллюстрации. Они состоят из трех основных элементов: клякса, чертеж (или карандашный рисунок) и орнамент. Клякса, след падения капли акварели на белом листе, – естественное физическое явление. Чертеж этой кляксы – попытка человека измерить и понять это физическое явление. Орнамент – один из первых доступных человеку способов описать через рисунок и ритм окружающий мир.
Собранные из этих элементов иллюстрации я отправлял Сергею Борисовичу на благословение. В ответ получал наставительные комментарии и исправлял рисунки. Так, шаг за шагом, приближался к пониманию смысла каждой главы. Теперь эта книга у вас в руках. И вы даже уже прочитали предисловие.
Ростан Тавасиев
А. ЗАКОНАМИ ПРИРОДЫ МЫ НАЗЫВАЕМ НАДЕЖНО УСТАНОВЛЕННЫЕ ЗАКОНОМЕРНОСТИ, ОПИСЫВАЮЩИЕ ПРОЦЕССЫ В РЕАЛЬНОМ МИРЕ. МАТЕМАТИЧЕСКИЕ МЕТОДЫ ПОМОГАЮТ НЕ ТОЛЬКО ЧЕТЧЕ ФОРМУЛИРОВАТЬ ЭТИ ЗАКОНЫ, НО И ИСПОЛЬЗОВАТЬ ПРОВЕРЕННЫЕ АЛГОРИТМЫ И ПРАВИЛА КАК ДЛЯ РАСЧЕТОВ РЕЗУЛЬТАТА ИХ ДЕЙСТВИЯ, ТАК И ДЛЯ ПОЛУЧЕНИЯ НОВЫХ СООТНОШЕНИЙ, Т.Е. НОВЫХ ЗАКОНОВ ПРИРОДЫ.
Б. «НЕПОСТИЖИМАЯ ЭФФЕКТИВНОСТЬ МАТЕМАТИКИ» СОСТОИТ В ПЕРВУЮ ОЧЕРЕДЬ В ТОМ, ЧТО ЗАКОНЫ И ПРАВИЛА, СФОРМУЛИРОВАННЫЕ И ДОКАЗАННЫЕ ДЛЯ ИДЕАЛЬНЫХ МАТЕМАТИЧЕСКИХ ОБЪЕКТОВ, ОКАЗЫВАЮТСЯ С ВЫСОКОЙ ТОЧНОСТЬЮ ПРИМЕНИМЫ К РЕАЛЬНЫМ ОБЪЕКТАМ И ПРОЦЕССАМ.
Самый глобальный процесс – расширение вселенной[1] – описывается формулой всего лишь из трех символов: v = Hr. Это закон Хаббла. Здесь r – так называемое собственное расстояние до объекта («нормальное» расстояние «в метрах» в данный момент времени), v – скорость изменения этого собственного расстояния со временем по часам наблюдателя (так называемое cosmic time), связанная с расширением. Наконец, H – постоянная Хаббла. Это коэффициент пропорциональности, характеризующий, насколько быстро происходит расширение в данную эпоху. Закон Хаббла можно сформулировать и словами (вообще, чем проще уравнение, тем, как правило, легче это сделать): скорость удаления галактики за счет расширения вселенной прямо пропорциональна расстоянию до нее. Однако весь контекст лучше проявляется именно при формульной записи даже в таком простом случае. И сам закон выводится с очевидной неизбежностью именно на языке формул (см. приложение 1).
Закон Хаббла был получен на основе анализа данных наблюдений в 1929 г., но еще в 1922-м Александр Фридман и независимо от него в 1927-м Жорж Леметр вывели соответствующее соотношение из решений уравнений Эйнштейна для однородной и изотропной вселенной[2].
Наблюдения позволяют проверять закон Хаббла. Для не слишком далеких галактик их скорость можно с хорошей точностью определить по красному смещению, используя закон Доплера (хотя космологическое красное смещение имеет другую природу, тем не менее можно показать, что вплоть до расстояний в несколько миллиардов световых лет доплеровская формула дает довольно правильный результат). Для более далеких галактик скорость рассчитывается в рамках заданной космологической модели.
Удивительным для многих фактом является то, что скорость в законе Хаббла может превосходить световую[3]. Расстояние, на котором это происходит, соответствует сфере Хаббла. До нее сейчас всего лишь около 14 млрд световых лет. Мы наблюдаем галактики, находящиеся в данный момент более чем вдвое дальше, т. е. можем указать на снимке (например, в Ультраглубоком поле Хаббла – на изображении небольшого участка неба размером меньше диска Луны, полученном в результате длительных наблюдений с помощью Космического телескопа имени Хаббла) объект, скорость удаления которого от нас в настоящий момент превосходит 300 000 км/с.
В этом примере хорошо иллюстрируются ключевые преимущества математического подхода в физике (и других науках):
– вывод ключевого закона природы из четко сформулированных предположений путем применения проверенного аппарата (математика);
– компактная, ясная запись (открывающая также путь к наглядной визуализации путем построения графиков);
– возможность расчета следствий (что позволяет, в частности, сравнивать предсказания теории с наблюдениями).
Именно с началом использования математических методов физика стала быстро развиваться, ведь без этого точные экспериментальные данные до некоторой степени были не востребованы (разумеется, верно и обратное: приход математики отчасти стимулирован появлением точных измерений наблюдаемых параметров). То же самое можно сказать и о многих других науках. Замена качественных описаний и построений на количественные расчеты, основанные на развитом математическом аппарате, позволила выйти на новый уровень.
Ретроспективно окидывая взором разнообразные попытки человечества постигнуть суть вещей, мы вряд ли сможем представить, что возможна какая-то альтернатива математическому описанию физических законов. Более того, для нас теперь само их понимание означает, по сути, построение количественной модели, позволяющей успешно описывать данные наблюдений и экспериментов, а также предсказывать исходы будущих опытов. Без формул это сделать невозможно. Именно поэтому некоторые физики (а также химики, молекулярные биологи и многие другие ученые) немного свысока взирают на те науки, где уровень использования математики гораздо ниже и где много качественных (не синоним слова «хороших») словесных рассуждений. Значит, казалось бы, всякий любознательный человек, стремящийся понять, как устроена природа, должен пытаться уяснить все на языке формул. Не тут-то было! Формульный язык, по всей видимости, слишком «неестественен». Человеку как виду несколько миллионов лет, а формулы мы используем в тысячу раз меньше времени. Да и применяют-то их далеко не все. Наш мозг развивался не для того, чтобы использовать формулы. А жаль. О мозге, специально для них приспособленном, мы поговорим в последней главе. Пока же ограничимся современным человеческим восприятием.