
Оголихин Д. А.

Метод конечных элементов

Коротко и без лишней теории

Дмитрий Оголихин
 Метод конечных элементов

«ЛитРес: Самиздат»

2018

Оголихин Д. А.

Метод конечных элементов / Д. А. Оголихин — «ЛитРес: Самиздат», 2018

Многие инженеры, несмотря на высшее образование, не знают, что такое метод конечных элементов (МКЭ) и оставляют задачи расчёта конструкций дорогостоящим программным продуктам типа Ansys или Nastran. Назначение этой книги - показать, что МКЭ является таким же несложным методом, как и весь сопромат.

Содержание

Введение	-
Алгоритм МКЭ	6
Конец ознакомительного фрагмента.	7

Дмитрий Оголихин Метод конечных элементов в MathCad

Введение

Memod конечных элементов — один из т. н. сеточных методов. Такие методы предполагают рассмотрение цельной конструкции как совокупности отдельных конечных элементов, как показано на рисунке 1.

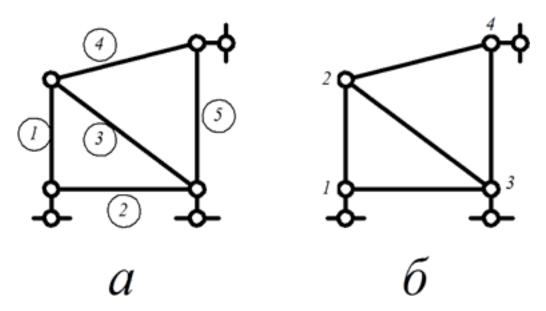


Рисунок 1. Разбиение конструкции на конечные элементы. а – нумерация конечных элементов; б – нумерация узлов.

В качестве конечных элементов выступают знакомые нам из сопротивления материалов и строительной механики стержни, балки, плиты, оболочки и т. п. По сути своей решение методом конечных элементов сводится к решению уравнения задачи в динамической постановке:

$$M \cdot d^2 u/dt^2 + C \cdot du/dt + K \cdot u = P$$

где M – матрица масс конструкции;

C — матрица демпфирования конструкции;

K — матрица жёсткости конструкции;

 d^2u/dt^2 – вектор ускорений узлов конструкции;

du/dt – вектор скоростей узлов конструкции;

и – вектор перемещений узлов конструкции;

P — вектор узловых нагрузок.

Если вектор узловых сил P не меняется во времени, то задача сводится к *статической*, описываемой уравнением:

$$K \cdot u = P$$

Так как многие задачи в машиностроении сводятся к *статическим*, то упор в книге будет делаться на них. Для рассмотрения задач будет использоваться среда MathCad 15.

Алгоритм МКЭ

Для того, чтобы решить уравнение необходимо провести предварительную подготовку. В общем и целом, алгоритм решения выглядит следующим образом:

- 1) Разбиение конструкции на конечные элементы;
- 2) Составление матрицы жёсткости каждого конечного элемента;
- 3) Перевод матрицы жёсткости из локальной системы координат в глобальную;
- 4) Составление глобальной матрицы жёсткости всей конструкции;
- 5) Приведение нагрузок к узловым;
- 6) Учёт закреплений;
- 7) Решение уравнения:

$$u = K^{-1} \cdot P$$

Операция 1, на взгляд автора, интуитивно понятная и не требует пояснений.

Конец ознакомительного фрагмента.

Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.