

О. С. Решетняк

Методы оценки качества поверхностных вод суши

Ольга Сергеевна Решетняк Методы оценки качества поверхностных вод суши

http://www.litres.ru/pages/biblio_book/?art=39836371 Методы оценки качества поверхностных вод суши: ISBN 978-5-9275-2427-3

Аннотация

В учебном пособии освещаются вопросы оценки качества поверхностных вод, рассматриваются основные источники загрязнения и методы химического анализа поверхностных вод. Представлены различные методы оценки качества воды по гидрохимическим, гидробиологическим и экотоксикологическим показателям, а также критерии пригодности воды для питьевых и хозяйственных целей.

Полученные магистрантами знания могут быть использованы при разработке и осуществлении мероприятий по охране вод, обеспечению их экологической безопасности и рациональному использованию водных ресурсов.

Учебное пособие предназначено для студентов магистратуры направления подготовки 05.04.06 «Экология и природопользование» по дисциплине «Методы и средства контроля качества поверхностных вод», а также для других обучающихся по специальностям экологического профиля.

Содержание

Введение	4
1. Качество поверхностных вод суши.	6
Нормативы оценки качества воды	
1.1. Виды водопользования	7
1.2. Нормативы качества воды	13
1.3. Критерии экстремально высокого и	18
высокого уровня загрязнения воды	
2. Источники загрязнения поверхностных вод	22
Конец ознакомительного фрагмента.	26

О. С. Решетняк Методы оценки качества поверхностных вод суши

Введение

Состояние поверхностных вод в экономически развитых регионах в связи с деятельностью человека в настоящее время неблагополучно, а качество воды многих водоемов и водотоков не удовлетворяет современным нормативным требованиям. Антропогенное воздействие на водные объекты приводит к нарушению их экологического состояния, ухудшению качества водной среды и, как следствие, снижению устойчивости водных экосистем. Еще недавно объемы и токсичность техногенных выбросов в целом не превышали способности биосферы к их поглощению и нейтрализации. Сегодня же они достигают предела возможностей природных экосистем к самоочищению. Помимо истощения природных ресурсов, развитие промышленности создало новую проблему – загрязнение водной среды.

Оказались сильно загрязненными, преимущественно промышленными отходами, водоемы, атмосферный воздух, почва. Эти загрязнения не только крайне отрицательно сказдоровья людей. К настоящему времени не сохранилось ни одного уголка на Земле, где отсутствовало бы влияние человека на природу. Даже в Антарктиде отмечены радиоак-

тивные осадки и повышенное содержание некоторых прио-

зались на плодородии почв, растительности и животном мире, но и стали представлять существенную опасность для

ритетных загрязняющих веществ.
Поэтому развитие методов и средств контроля качества поверхностных вод суши, а также разработка методологии оценки качества вод по гидрохимическим, гидробиологическим и экотоксикологическим показателям становятся осо-

бенно актуальными.

1. Качество поверхностных вод суши. Нормативы оценки качества воды

Под качеством воды в целом понимается характеристика ее состава и свойств, определяющая ее пригодность для конкретных видов водопользования (ГОСТ 17.1.1.01-77), при этом критерии качества представляют собой признаки, по которым проводится оценка качества воды.

1.1. Виды водопользования

Основные виды водопользования на водотоках и водоемах регламентируются Министерством природных ресурсов и экологии РФ, Федеральной службой по гидрометеорологии и мониторингу окружающей среды и подлежат утверждению органами местного самоуправления субъектов РФ. Водопользование — использование водных объектов для удовлетворения любых нужд населения и народного хозяйства (ГОСТ 17.1.1.01-77).

Согласно ГОСТ 17.1.1.03-86 «Охрана природы. Гидросфера. Классификация водопользований», водопользование классифицируется по:

- целям использования вод;
- объектам водопользования;
- техническим условиям водопользования воды;
- условиям предоставления водных объектов в пользование;
 - характеру использования воды;
 - способу использования водных объектов.

Вода водоемов и водотоков используется *для целей* питьевого и хозяйственно-бытового водоснабжения, сброса очищенных сточных и (или) дренажных вод, производства электрической энергии, орошения земель, функционирования водного транспорта, сплава древесины и др.

К хозяйственно-питьевому водопользованию относится использование водных объектов или их участков в качестве источников хозяйственно-питьевого водоснабжения, а также для обеспечения водой предприятий пищевой про-

мышленности. В соответствии с Санитарными правилами и нормами СанПиН 2.1.4.559-96, питьевая вода должна быть безопасна в эпидемическом и радиационном отноше-

нии, быть безвредной по химическому составу и должна иметь благоприятные органолептические свойства (отсутствие неприятного вкуса, запаха и т.п.). К культурно-бытовому водопользованию относится

использование водоемов и водотоков для купания, занятия спортом и отдыха населения. Требования к качеству воды, установленные для культурно-бытового водопользования, распространяются на все участки водоемов и водото-

ков, находящихся в черте населенных мест, независимо от вида их использования в качестве объектов для обитания, размножения и миграции рыб и других водных организмов. Согласно СанПиН 2.1.5.980-00 «Гигиенические требования к охране поверхностных вод», установлены гигиенические нормативы состава и свойств воды водных объектов с точки зрения их использования и охраны. Выделены

две категории водопользования: к первой категории водопользования относится использование водных объектов или их участков в качестве источника питьевого и хозяйственно-бытового водопользования, а также водоснабжение предтов или их участков для рекреационного водопользования. Требования к качеству воды, установленные для второй категории водопользования, распространяются также на все участки водоемов, находящихся в черте населенных пунктов.

Качество воды водных объектов должно соответствовать требованиям СанПиН 2.1.5.980-00 (табл. 1), при этом содер-

приятий пищевой промышленности; ко второй категории водопользования относится использование водных объек-

жание химических веществ не должно превышать ПДК веществ в воде водных объектов по ГН 2.1.5.689-98 «Предельно допустимые концентрации (ПДК) химических веществ в воде водных объектов хозяйственно-питьевого и культурно-бытового водопользования».

Наиболее строгие требования предъявляются к водоемам и водотокам, относящимся к категории рыбохозяйственно-

Наиболее строгие требования предъявляются к водоемам и водотокам, относящимся к категории рыбохозяйственного назначения. Федеральный закон № 420-ФЗ от 28.12.2010 определяет, что к водным объектам рыбохозяйственного значения относятся водные объекты, которые используются или могут быть использованы для добычи (вылова) водных биоресурсов.

Таблица 1

Общие требования к составу и свойствам воды водных объектов в контрольных створах и местах питьевого, хозяйственно-бытового и рекреационного водопользования (Сан-

ПиН 2.1.5.980-00)

	Показатели	Категории водопользования		
Nο		Для питьевого и хозяйственно- бытового водоснабжения, а также для водоснабжения пи- щевых предприятий	Для рекреационного водопользования, а также в черте населенных мест	
1	2	3	4	
	Взвешенные вещества (ВВ)*	При сбросе сточных вод, производстве работ на водном объекте и в прибрежной зоне содержание ВВ в контрольном створе (пункте) не должно увеличиваться по сравнению с естественными условиями более чем на		
1		0,25 мг/дм³ 0,75 мг/дм³ Для водных объектов, содержащих в межень более 30 мг/дм³ природных ВВ, допускается увеличение их содержания в воде в пределах 5 %. Взвеси со скоростью выпадения более 0,4 мм/с для проточных водоемов и более 0,2 мм/с для водохранилищ к спуску запрещаются		
2	Плавающие примеси	На поверхности воды не должны обнаруживаться пленки нефтепродуктов, масел, жиров и скопление других примесей		
3	Окраска	Не должна обнаруживаться в столбике		
	Опристи	20 см	10 см	
4	Запахи	Вода не должна приобретать запахи интенсивностью более 2 баллов, обнаруживаемые: непосредственно или при последующем хлорировании или других способах обработки		

1	2	3	4		
5	Температура	Летняя температура воды в результате сброса сточных вод не должна повышаться более чем на 3 °С по сравнению со среднемесячной температурой воды самого жаркого месяца года за последние 10 лет			
6	Водородный пока- затель (pH)	Не должен выходить за пределы 6,5-8,5			
7	Минерализация воды	Не более 1000 мг/дм³, в т.ч.: хлоридов – 350; сульфатов – 500 мг/дм³			
8	Растворенный кислород	Не должен быть менее 4 мг/дм ³ в любой период года, в пробе, отобранной до 12 часов дня			
9	Биохимическое потребление кислорода (БП K_5)	Не должно превышать при температуре 20 °C			
		2 мг O ₂ /дм ³	4 мг O ₂ /дм ³		
10	Химическое по- требление кисло- рода, ХПК	Не должно превышать:			
10		$15 \ \mathrm{Mf} \ \mathrm{O_2^2/дm^3}$	30 мг О ₂ /дм ³		
11	Химические вещества	Не должны содержаться в воде водных объектов в концентрациях, превышающих ПДК или ОДУ			
12	Возбудители ки- шечных инфекций	Вода не должна содержать возбудителей кишечных инфекций			
	Термотолерантные колиформные бак- терии**	Не более			
13		100 КОЕ/100 мл**	100 КОЕ/100 мл		
14	Общие колиформ- ные бактерии**	Не более			
14		1000 КОЕ/100 мл**	500 КОЕ/100 мл		
15	Колифаги**		Не более		
15	T	10 БОЕ/100 мл**	10 БОЕ/100 мл		
16	Суммарная объемная активность радионуклидов при совместном присутствии*** $\Sigma \ ({\rm Ai} \ / \ {\rm YBi}) \leq 1$				

Примечания:

* Содержание в воде взвешенных веществ неприродного происхождения (хлопья гидроксидов металлов, образую-

щихся при обработке сточных вод, частички асбеста, стекловолокна, базальта, капрона, лавсана и т.д.) не допускается.

** Для централизованного водоснабжения; при нецен-

трализованном питьевом водоснабжении вода подлежит

обеззараживанию.

ного загрязнения контролируемой воды проводится дополнительный контроль радионуклидного загрязнения в соответствии с действующими нормами радиационной безопас-

*** В случае превышения указанных уровней радиоактив-

ветствии с оеиствующими нормами раошиционной оезопасности; Ai — удельная активность i-го радионуклида в воде; YBi — соответствующий уровень вмешательства для i-го радионуклида (приложение П-2 НРБ-99 (НРБ — нормы радиационной безопасности)).

ственного значения, в том числе ПДК вредных веществ для воды водных объектов, имеющих рыбохозяйственное значение, утверждены Приказом Министерства сельского хозяйства РФ от 13.12.2016 № 552.

Нормативы качества воды водных объектов рыбохозяй-

1.2. Нормативы качества воды

Контроль и оценка качества водной среды осуществляются с помощью системы основных нормативов.

- 1. Предельно допустимая концентрация (ПДК) химического вещества в воде водных объектов хозяйственно-питьевого и культурно-бытового водопользования (ПДКв), мг/дм³ максимальная концентрация вещества в воде, которая при поступлении в организм в течение всей жизни не должна оказывать прямого или опосредованного влияния на здоровье населения в настоящем и последующих поколениях, в том числе в отдаленные сроки жизни, а также не ухудшать гигиенические условия водопользования (ГН 2.1.5.689-98).
- 2. Предельно допустимая концентрация загрязняющих веществ в воде водоемов, используемых для рыбохозяйственных целей (ПДКрыбхоз), мг/дм³. Она характеризует его максимально допустимую концентрацию (или его метаболитов) в воде, при которой в водном объекте не возникают последствия, снижающие его рыбохозяйственную ценность (в ближайшее время и в перспективе) или затрудняющие его рыбохозяйственное использование при постоянстве этой концентрации в воде водного объекта (Методические ... 2009).

нормируемых веществ всегда значительно меньше ПДКв. Это объясняется тем, что токсические соединения могут накапливаться в организме рыб в весьма значительных количествах без влияния на их жизнедеятельность.

Величина последней для подавляющего большинства

вочно безопасный уровень воздействия) загрязняющих веществ в воде водоемов (*ВДКв*), мг/дм³. Нормативы, определяемые этим показателем, устанавливаются расчетным пу-

3. Временно допустимая концентрация (ориентиро-

- тем на срок 3 года (http://dic. academic.ru).
 4. *Ориентировочный допустимый уровень химическо*-
- **го вещества в воде (ОДУ)**, мг/дм³ временный гигиенический норматив, аналогичный ПДК (http://dic.academic.ru). Разрабатывается, как правило, расчетным способом и на основе экспресс-экспериментальных методов прогноза токсичности. Применяется только на стадии предупредительного
- санитарного надзора за проектируемыми или строящимися предприятиями, реконструируемыми очистными сооружениями и т.п.

 5. *Предельно допустимый сброс (ПДС)*, г/ч (кг/сут) это норматив, регламентирующий массу загрязняющего вещества в сточных водах, сбрасываемых в водоем. Это масса

вещества в сточных водах, максимально допустимая к отведению с установленным режимом в данном пункте водного объекта в единицу времени с целью обеспечения норм качества воды в контрольном пункте (ГОСТ 17.1.1.01-77).

Применение этого норматива должно обеспечивать соблюдение санитарно-гигиенических норм, установленных для водных объектов. Величина ПДС определяется расчетным путем на период, установленный органами по регулированию использования и охране вод. После этого она подлежит пересмотру в сторону уменьшения вплоть до прекращения сброса загрязняющих веществ в водоемы.

Нормирование качества воды состоит в установлении для воды водного объекта совокупности допустимых значений показателей ее состава и свойств, в пределах которых надежно обеспечиваются здоровье населения, благоприятные условия водопользования и экологическое благополучие водного объекта.

мы качества воды водоемов и водотоков для условий хозяйственно-питьевого, культурно-бытового и рыбохозяйственного водопользования. Вещество, вызывающее нарушение норм качества воды, называют загрязняющим (ГОСТ 17.1.1.01-77).

Правила охраны поверхностных вод устанавливают нор-

Предельно допустимая концентрация вещества в воде устанавливается:

- для хозяйственно-питьевого и культурно-бытового водопользования (ПДК в) с учетом трех показателей вредности: органолептического; общесанитарного; санитарно-токсикологического.
 - для рыбохозяйственного водопользования (ПД-

низмов; - ухудшение товарных качеств обитающей в водном объекте рыбы; - замена ценных видов рыб на малоценные.

– гибель рыб и кормовых организмов для рыб;

 ${\bf K_{BD}}$) с учетом пяти показателей вредности: органолептического; санитарного; санитарно-токсикологического; токсикологического; рыбохозяйственного (Методические ...

Рыбохозяйственные ПДК также должны удовлетворять ряду условий, при которых не должны наблюдаться (Мето-

- постепенное исчезновение видов рыб и кормовых орга-

2009).

дические ... 2009):

Органолептический показатель вредности характеризует способность вещества изменять органолептические свойства воды. Общесанитарный - определяет влияние вещества на процессы естественного самоочищения вод

за счет биохимических и химических реакций с участием естественной микрофлоры. Санитарно-токсикологический показатель характеризует вредное воздействие на организм человека, а токсикологический - показывает токсичность вещества для живых организмов, населяющих водный

объект. Рыбохозяйственный показатель вредности определяет порчу качеств промысловых рыб. Наименьшая из безвредных концентраций по трем (пя-

ти) показателям вредности принимается за ПДК с указанием

лимитирующего показателя вредности (ЛПВ). Критерии оценки загрязненности поверхностных вод (ПДК, ЛПВ и классы опасности веществ) разными группами веществ приведены в Приложении 4.

1.3. Критерии экстремально высокого и высокого уровня загрязнения воды

- 1. Под экстремально высоким уровнем загрязнением (ЭВЗ) природной среды понимается для поверхностных вол сущи (РЛ 52 24 643-2002):
- ных вод суши (РД 52.24.643-2002):

 а) максимальное разовое содержание для нормируемых веществ 1–2-го класса опасности в концентрациях, превы-
- опасности в 50 и более раз¹; б) появление запаха вод интенсивностью более 4 баллов; в) покрытие пленкой (нефтяной, масляной или другого

шающих ПДК в 5 и более раз, для веществ 3-4-го класса

- происхождения) более 1/3 поверхности водного объекта при его обозримой площади до 6 км²; г) покрытие пленкой поверхности водоема на площади 2
- д) снижение содержания растворенного кислорода до 2 $\mbox{мг/дm}^3$ и менее;

и более κm^2 при его обозримой площади более 6 κm^2 ;

е) увеличение биохимического потребления кислорода (БК Π_5) свыше 40 мг O_2 /дм³;

водных объектов, в качестве ПДК условно принимается 0,01 мкг/дм³.

¹ Содержание веществ в поверхностных, морских водах сопоставляется с наиболее «жесткими» ПДК в ряду одноименных показателей. Для веществ, на которые нормативными документами предусмотрено полное отсутствие их в воде

ж) массовая гибель моллюсков, раков, лягушек, рыб, дру-

гих водных организмов и водной растительности.
2. Экстремально высокие уровни загрязнения при-

родной среды, как правило, обусловлены аварийными и залповыми выбросами (сбросами) ЗВ. Информация об аварийных (залповых) выбросах (сбросах) ЗВ в природную сре-

ду в следующих случаях (РД 52.24.643-2002): а) если аварийный выброс (сброс) привел к экстремально

высокому загрязнению и оно зафиксировано аналитически или по визуальным и органолептическим признакам; б) при увеличении объемов поступления сточных вод от

стационарных источников загрязнения и увеличении кон-

центраций загрязняющих веществ в сточных водах в 10 и более раз; в) при попадании в природную среду от нестационарных источников загрязнения (автотранспорт, железнодорожный

ющих веществ, веществ, для которых ПДК не установлены, нефтепродуктов в количестве 5 тонн и более; г) при сбросе нефти и других продуктов в количестве 10

транспорт, суда, другие плавсредства) токсических загрязня-

тонн и более.

3. Под высоким загрязнением (ВЗ) природной сре-

ды понимается для поверхностных вод суши (РД 52.24.643-2002):

а) максимальное разовое содержание для нормируемых веществ 1–2-го класса опасности в концентрациях, превы-

единений меди, железа и марганца – от 30 до 50 раз), величина биохимического потребления кислорода (БПК 5) от 10 до $40 \,\mathrm{mr} \, \mathrm{O}_2/\mathrm{дm}^3$, снижение концентрации растворенного кислорода до значений от 3 до 2 мг/дм^3 ;

шающих ПДК от 3 до 5 раз, для веществ 3-4-го класса опасности – от 10 до 50 раз (для нефтепродуктов, фенолов, со-

б) покрытие пленкой (нефтяной, масляной или другого происхождения) от 1/4 до 1/3 поверхности водного объекта при его обозримой площади до 6 кm^2 ; в) покрытие пленкой поверхности водного объекта на площади от 1 до 2 км² при его обозримой площади более 6

км². Обобщенные критерии определения случаев ВЗ и ЭВЗ для поверхностных вод суши с учетом класса опасности ве-

ществ приведены в таблице 2. Критерии оценки уровня загрязненности воды с учетом кратности превышения ПДК и повторяемости случаев превышения представлены в таблице 3.

Таблица 2

52.24.643-2002)

Критерии определения высокого и экстремально высокого уровней загрязненности воды водных объектов (РД

Ингредиенты и показатели качества воды	Кратность превышения ПДК для случаев	
	В3	ЭВЗ
1-2-го классов опасности	[3; 5)	≥5
3–4-го классов опасности, кроме нефтепродуктов, фенолов, меди, железа общего	[10; 50)	≥50
4-го класса опасности – нефтепродукты, фенолы, медь, железо общее	[30; 50)	≥50

Таблица 3

Критерии оценки уровня загрязненности воды по кратности превышения ПДК и повторяемости случаев превышения (РД 52.24.643-2002)

Кратность превышения ПДК	Уровень загрязненности воды	Повторя- емость, %	Характеристика загрязненности воды
(1; 2)	Низкий	[1; 10)	Единичная
[2; 10)	Средний	[10; 30)	Неустойчивая
[10; 50)	Высокий	[30; 50)	Характерная
свыше 50	Экстремально высокий	[50; 100)	Устойчивая

2. Источники загрязнения поверхностных вод

На протяжении тысячелетий люди использовали воду рек, озер и морей для питьевых и хозяйственных целей, для сброса в них загрязненных сточных вод. И до определенного времени (до начала XX века) это не вызывало особого беспокойства. Срабатывал механизм естественного самоочищения водоемов. Однако сейчас многие водоемы перестали справляться с поступающими массами химических веществ, в том числе и загрязняющих. Рост городов и населения, бурное развитие промышленности, энергетики, водного транспорта, добыча полезных ископаемых, рост орошаемого земледелия, водные рекреации привели к серьезному загрязнению вод. В настоящее время резко ухудшилось качество воды не только малых рек и озер, но и более крупных водоемов и водотоков.

В результате хозяйственной деятельности в водные объекты поступает широкий комплекс загрязняющих веществ органического и неорганического происхождения (Никаноров и др., 2012). Чаще всего происходит сброс недостаточно очищенных промышленных и коммунально-бытовых стоков, что и является основной причиной их загрязнения. В районах с развитым сельскохозяйственным производством

ния, пестициды, отходы животноводческих ферм. Загрязнение атмосферы также влияет на качество воды рек и озер, поскольку все химические вещества, выбрасываемые транспортом и предприятиями в атмосферу, осаждаются на поч-

в водоемы и водотоки вместе с продуктами эрозии почв попадают нитраты, нитриты и другие минеральные удобре-

венном покрове, смываются с водосборных территорий в реки и озера, выпадают с дождевыми и талыми водами в водоемы.

Основные источники антропогенного загрязнения гидро-

Основные источники антропогенного загрязнения гидросферы в целом представлены на следующей схеме (рис. 1). Волные ресурсы на территории России распределены по

Водные ресурсы на территории России распределены по регионам крайне неравномерно, и проблема чистой воды

стоит очень остро. Речной сток является основой водных ресурсов в нашей стране, преобладающая часть его – 90 % – приходится на бассейны Северного Ледовитого и Тихого

океанов.

Рис. 1. Источники антропогенного загрязнения гидросферы (http://rudocs.exdat.com/docs/index-224567.html)

На большей части водных объектов, по данным наблюдений Росгидромета, качество воды не отвечает нормативным требованиям. Вода основных крупнейших рек: Волги, Дона, Кубани, Оби, Енисея, Лены, Печоры — оценивается как «загрязненная», их крупных притоков: Оки, Камы, Иртыша, Тобола, Томи, Туры, Миасса, Исети и других как «очень загрязненная» (Никаноров и др., 2012).

Основные источники поступления загрязняющих веществ в водные объекты

Главным источником поступления в природные воды загрязняющих веществ как в $P\Phi$, так и в других странах явля-

рованы по количеству сбрасываемых сточных вод и степени их загрязнения в следующий ряд (Никаноров, 2008):

целлюлозно-бумажная > химическая > цветная

ется промышленность, отрасли которой могут быть ранжи-

> машиностроение > нефтедобывающая > нефтехимическая > электроэнергетика

Химический состав сбрасываемых промышленных сточих вод и их количество (объем) зависят, в первую очередь,

металлургия > черная металлургия > угольная

жимическии состав сорасываемых промышленных сточных вод и их количество (объем) зависят, в первую очередь, от мощности конкретного производства, специфики технологических циклов и степени очистки сточных вод.

Следующим по значимости источником загрязнения природных вод (поверхностных и подземных) являются сточные воды с сельскохозяйственных территорий.

Конец ознакомительного фрагмента.

Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, <u>купив полную легальную</u> версию на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.