У ЗЕМЛИ БЫЛО ДВЕ ЛУНЫ

Планеты-каннибалы, ледяные гиганты, грязевые кометы и другие светила ночного неба

ЭРИК АСФОГ

Эрик Асфог Когда у Земли было две Луны. Планеты-каннибалы, ледяные гиганты, грязевые кометы и другие светила ночного неба

Текст предоставлен правообладателем http://www.litres.ru/pages/biblio_book/?art=65777273 Когда у Земли было две Луны: Планеты-каннибалы, ледяные гиганты, грязевые кометы и другие светила ночного неба: Альпина нон-фикин; Москва; 2021

Аннотация

В 1959 г. советская станция «Луна-3» сделала первые фотографии обратной стороны Луны. Даже в плохом разрешении изображения ошеломили ученых: обратная сторона выглядела как огромное пространство горных массивов, а не как обширные лавовые равнины, покрывающие видимую с Земли сторону. Последующие миссии качественными снимками подтвердили это открытие. Почему Луна выглядит именно так и может ли это что сказать о нашем месте во Вселенной? Оказывается, может – и довольно много.

В книге «Когда у Земли было две Луны» известный планетолог Эрик Асфог отправляет нас в захватывающее путешествие в самые далекие времена нашей Галактики, чтобы выяснить, почему Луна такая разная. Интересно написанная, с провокационными аргументами, эта книга — не только головокружительный астрономический тур, но и глубокое исследование происхождения жизни в миллиардах километрах от нашего дома.

Содержание

Краткий список планет и их спутников	8
Введение	18
Глава 1	77
Конец ознакомительного фрагмента	78

Эрик Асфог Когда у Земли было две Луны. Планеты-каннибалы, ледяные гиганты,

грязевые кометы и другие светила ночного неба

наук, Михаил Гирфанов, канд. геол. – минерал. наук

Переводчик Виктория Краснянская

Научные редакторы Владимир Сурдин, канд. физ. – мат.

Редактор Петр Фаворов

Издатель П. Подкосов

Руководитель проекта И. Серёгина

Корректоры И. Астапкина, О. Петрова

Компьютерная верстка *А. Фоминов* Дизайн обложки *Ю. Буга*

Фото на обложке NASA, Shutterstock

© Erik Asphaug, 2019

Th is edition is published by arrangement with CHASE LITERARY AGENCY and The Van Lear Agency LLC

© Издание на русском языке, перевод, оформление. OOO

«Альпина нон-фикшн», 2021

Все права защищены. Данная электронная книга предназначена исключительно для частного использования в личных (некоммерческих) целях. Электронная книга, ее части, фрагменты и элементы, включая текст, изображения и иное, не подлежат копированию и любому другому использованию без разрешения правообладателя. В частности, запрещено такое использование, в результате которого электронная книга, ее часть, фрагмент или элемент станут доступными ограниченному или неопределенному кругу лиц, в том числе посредством сети интернет, независимо от того, будет предоставляться доступ за плату или безвозмездно.

Копирование, воспроизведение и иное использование электронной книги, ее частей, фрагментов и элементов, выходящее за пределы частного использования в личных (некоммерческих) целях, без согласия правообладателя является незаконным и влечет уголовную, административную и гражданскую ответственность.

* * *

Посвящается Генри, Галену и Фиби

Эта книга издана в рамках программы «Книжные проекты Дмитрия Зимина» и продолжает серию «Библиотека «Династия». Дмитрий Борисович Зимин – основатель компании «Вымпелком» (Beeline), фонда некоммерческих программ «Династия» и фонда «Московское время».

Программа «Книжные проекты Дмитрия Зимина» объединяет три проекта, хорошо знакомые читательской аудитории: издание научно-популярных переводных книг «Библиотека «Династия», издательское направление фонда «Московское время» и премию в области русскоязычной научно-популярной литературы «Просветитель».

Подробную информацию о «Книжных проектах Дмитрия Зимина» вы найдете на сайте <u>ziminbookprojects.ru</u>.

Краткий список планет и их спутников

В Солнечной системе имеется по крайней мере девять

планет¹ (в зависимости от того, кто ведет подсчет) и более 200 их естественных спутников. Ниже перечислены некоторые самые интересные и важные из них². Поскольку спутники иногда имеют странную форму, а планеты с коротким периодом вращения представляют собой сплюснутые эллипсоиды, приводятся их средние диаметры. Радиусы орбит планет даны в астрономических единицах (а.е.), где 1 а.е. равна среднему расстоянию от Земли до Солнца — 149,6 млн километров. Радиусы орбит спутников даются в радиусах их

МЕРКУРИЙ

планет.

Расстояние от Солнца: 0,39 а.е.

Constraining the Size, Shape, and Albedo of 2003 EL61, a Rapidly Rotating, Pluto-Sized Object in the Kuiper Belt." *Astrophysical Journal* 639 (2006): 1238–51 µ D. Ragozzine and M. E. Brown, "Orbits and Masses of the Satellites of the Dwarf Planet Haumea (2003 EL61)," *Astronomical Journal* 137 (2009): 4766–76.

¹ Согласно официальной позиции Международного астрономического союза, в Солнечной системе к категории «планета» относятся восемь тел – Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран и Нептун. – *Прим. науч. ред*.

² Данные о планетах и спутниках взяты с сайта https://ssd.jpl.nasa.gov. Данные по Луне и орбитам планет – с сайта https://nssdc.gsfc.nasa.gov/planetary/factsheet. Данные по Хаумее – из D. L. Rabinowitz et al., "Photometric Observations

Диаметр: 4878 км

Macca: $3,301 \times 10^{23}$ кг

Орбитальный период: 0,24 года / 88 суток

Период вращения: 58,6 суток

BEHEPA

Расстояние от Солнца: 0,72 а.е.

Диаметр: 12 104 км

Macca: $4,867 \times 10^{24}$ кг

Орбитальный период: 0,62 года / 226 суток

Период вращения: 243 суток (обратное вращение)

ЗЕМЛЯ

Расстояние от Солнца: 1 а.е. (по определению)

Диаметр: 12742 кмМасса: $5,972 \times 10^{24} \text{ кг}$

Орбитальный период: 1 год / 365,26 суток

Период вращения: 23,93 часа (сидерические сутки)

Луна

Расстояние от планеты: 60,3 радиуса Земли

Диаметр: 3474 км

Macca: $7,35 \times 10^{22}$ кг

Орбитальный период обращения вокруг Земли: 27,3 суток (сидерический месяц)

MAPC

Расстояние от Солнца: 1,52 а.е.

Диаметр: 6779 км

Macca: $6,417 \times 10^{23}$ кг

Орбитальный период: 1,88 года

Период вращения: 24,6 часа

Фобос

Расстояние от планеты: 2,8 радиуса Марса

Диаметр: 22 км

Macca: 10.8×10^{15} кг

Орбитальный период обращения вокруг Марса:

7,7 часа

Деймос

Расстояние от планеты: 7,0 радиуса Марса

Диаметр: 12 км

Macca: $1,48 \times 10^{15}$ кг

Орбитальный период обращения вокруг Марса: 30,3 часа

ЮПИТЕР

Расстояние от Солнца: 5,2 а.е.

Диаметр: 139 882 км

Macca: $1,898 \times 10^{27}$ кг

Орбитальный период: 11,86 года

Период вращения: 9,9 часа

Ио

Расстояние от планеты: 6,03 радиуса Юпитера

Диаметр: 3643 км

Macca: $8,93 \times 10^{22}$ кг

Орбитальный период обращения вокруг Юпитера:

1,8 суток

Европа

Расстояние от планеты: 9,59 радиуса Юпитера

Диаметр: 3130 км

Macca: $4,79 \times 10^{22}$ кг

Орбитальный период обращения вокруг Юпитера: 3.6 суток

Ганимед

Расстояние от планеты: 15,3 радиуса Юпитера

Диаметр: 5268 км Масса: 1.48 × 10²³ кг

Орбитальный период обращения вокруг Юпитера:

7,2 суток

Каллисто

Расстояние от планеты: 26,93 радиуса Юпитера

Диаметр: 4806 км

Macca: $1,08 \times 10^{23}$ кг

Орбитальный период обращения вокруг Юпитера: 16,7 суток

CATYPH

Расстояние от Солнца: 9,6 а.е.

Диаметр: 116 464 км

Macca: $5,683 \times 10^{26}$ кг

Орбитальный период: 29,44 года

Период вращения: 10,7 часа

Мимас

Расстояние от планеты: 3,18 радиуса Сатурна

Диаметр: 398 км

Macca: $3,75 \times 10^{19}$ кг

Орбитальный период обращения вокруг Сатурна: 0.942 суток

Энцелад

Расстояние от планеты: 4,09 радиуса Сатурна

Диаметр: 504 км

Macca: $1,08 \times 10^{20}$ кг

Орбитальный период обращения вокруг Сатурна:

1,37 суток

Тефия

Расстояние от планеты: 5,06 радиуса Сатурна

Диаметр: 1072 км

Macca: $6,17 \times 10^{20}$ кг

Орбитальный период обращения вокруг Сатурна: 1.89 суток

Диона

Расстояние от планеты: 6,48 радиуса Сатурна

Диаметр: 1125 км

Macca: $1,10 \times 10^{21}$ кг

Орбитальный период обращения вокруг Сатурна:

2,74 суток

Рея

Расстояние от планеты: 9,05 радиуса Сатурна

Диаметр: 1528 км

Macca: $2,31 \times 10^{21}$ кг

Орбитальный период обращения вокруг Сатурна:

4,52 суток

Титан

Расстояние от планеты: 21 радиус Сатурна

Диаметр: 5150 км

Macca: $1,34 \times 10^{23}$ кг

Орбитальный период обращения вокруг Сатурна:

15,9 суток

Гиперион

Расстояние от планеты: 25,7 радиуса Сатурна

Диаметр: 270 км

Macca: $1,08 \times 10^{19}$ кг

Орбитальный период обращения вокруг Сатурна:

21,3 суток

Япет

Расстояние от планеты: 61,1 радиуса Сатурна

Диаметр: 1469 км

Macca: $1,81 \times 10^{21}$ кг

Орбитальный период обращения вокруг Сатурна:

79,3 суток

YPAH

Расстояние от Солнца: 19,2 а.е.

Диаметр: 51 260 км

Macca: $8,681 \times 10^{25}$ кг

Орбитальный период: 84,02 года

Период вращения: 17,2 часа (обратное вращение)

Миранда

Расстояние от планеты: 5,08 радиуса Урана

Диаметр: 472 км

Macca: $6,59 \times 10^{19}$ кг

Орбитальный период обращения вокруг Урана: 1,41 суток

Ариэль

Расстояние от планеты: 7,47 радиуса Урана

Диаметр: 1160 кмМасса: $1.3 \times 10^{21} \text{ кг}$

Орбитальный период обращения вокруг Урана: 2,52 суток

Умбриэль

Расстояние от планеты: 10,4 радиуса Урана

Диаметр: 1170 км

Macca: $1,17 \times 10^{21}$ кг

Орбитальный период обращения вокруг Урана: 4,14 суток

Титания

Расстояние от планеты: 17,1 радиуса Урана

Диаметр: 1577 км Macca: $3,53 \times 10^{21}$ кг

Орбитальный период обращения вокруг Урана: 8,71 суток

Оберон

Расстояние от планеты: 22,8 радиуса Урана

Диаметр: 1523 кмМасса: $3.03 \times 10^{21} \text{ кг}$

Орбитальный период обращения вокруг Урана: 13,5 суток

НЕПТУН

Расстояние от Солнца: 30,0 а.е.

Диаметр: 49 244 км

Macca: $1,024 \times 10^{26}$ кг

Орбитальный период: 165 лет Период вращения: 16,11 часа

Протей

Расстояние от планеты: 3,77 радиуса Нептуна

Диаметр: 420 км

Macca: $4,4 \times 10^{19}$ кг

Орбитальный период обращения вокруг Нептуна: 1,1 суток

Тритон

Расстояние от планеты: 14,4 радиуса Нептуна

Диаметр: 1682 км

Macca: $2,14 \times 10^{22}$ кг

Орбитальный период обращения вокруг Нептуна: 5,9 суток

Нереида

Расстояние от планеты: 224 радиуса Нептуна

Диаметр: 340 км

Macca: $3,09 \times 10^{19}$ кг

Орбитальный период обращения вокруг Нептуна: 360 суток

ПЛУТОН

Расстояние от Солнца: 39,5 а.е.

Диаметр: 2377 км

Macca: $1,303 \times 10^{22}$ кг

Орбитальный период: 248 лет

Период вращения: 6,39 суток (обратное вращение)

Харон

Расстояние от планеты: 16,5 радиуса Плутона

Диаметр: 1212 км

Macca: $1,55 \times 10^{21}$ кг

Орбитальный период обращения вокруг Плутона: 6.39 суток

Никта

Расстояние от барицентра Плутон – Харон: 41 радиус Плутона

Диаметр: 74 км

Macca: $4,5 \times 10^{16}$ кг

Орбитальный период обращения вокруг Плутона – Харона: 24,9 суток

Гидра

Расстояние от барицентра Плутон – Харон: 54,5 радиуса Плутона

Диаметр: 38 км

Macca: 4.8×10^{16} кг

Орбитальный период обращения вокруг Плутона – Харона: 38 суток

XAYMEA

Расстояние от Солнца: 43 а.е.

Диаметр: 1436 км

Macca: 4.0×10^{21} кг

Орбитальный период: 284 года

Период вращения: 3,9 часа

Намака

Расстояние от планеты: 48,2 радиуса Хаумеи

Диаметр: 170 км

Macca: 1.8×10^{18} кг

Орбитальный период обращения вокруг Хаумеи: 34,7 суток

Хииака

Расстояние от планеты: 60,7 радиуса Хаумеи

Диаметр: 310 км

Macca: 1.8×10^{19} кг

Орбитальный период обращения вокруг Хаумеи: 49,1 суток

Введение

Я родился в октябре в Норвегии, поэтому прошло целых полгода до того, как мне удалось полежать на мягкой тра-

Время – отец истины. Мать ее – наш разум. Джордано Бруно

ве, глядя в небо после захода солнца. (Никогда не мешайте ребенку смотреть в небо.) Как бы то ни было, иногда той темной холодной зимой я, закутанный с ног до головы, оказывался на улице в катящейся куда-то детской коляске. Конечно, по-настоящему я этого не помню, но почти уверен, что впервые увидел Луну холодным полумесяцем, сияющим на темно-синем небе среди немногочисленных ярких жемчужин. Всю мою последующую жизнь это зрелище заставляет меня забыть любые дела. С тех пор – возможно, именно из-за этого – я интересуюсь планетами.

моя дочь. Она родилась летом в умеренных широтах. Когда ей исполнилось десять дней, мы отнесли девочку на соседний холм, чтобы полюбоваться на лунное противостояние³,

Более ясно я помню, как в первый раз встретилась с Луной

³ Противостояние (оппозиция) происходит, когда Солнце и Луна находятся на противоположных сторонах от Земли. В этот момент Луна становится абсолютно полной. Во время большинства противостояний тела не располагаются точно на одной линии, так что Луна находится вне прямой тени Земли; точно в момент противостояния полная Луна становится очень яркой из-за так называемого оп-

глядывающее из складок хлопкового слинга. Она издала новый звук, напоминающий какое-то слово, и потянулась пальчиками к бледно-белому кругу в небе.

С детства мы знакомы с Луной, мы смотрим на нее, она волнует нас и внушает нам благоговение. Астрологи утверждают, что она оказывает огромное влияние на наш харак-

тер, наши моральные качества и нашу душу. Бесчисленные поколения выросли под ее вечным благосклонным взглядом, что на временной дистанции порядка миллиона лет привело

когда ночное светило становится особенно ярким; блеск Луны затмил все, кроме нескольких звезд и, возможно, одной планеты. Стоял тихий прохладный вечер, вокруг нас кружили насекомые. Я никогда не забуду, как выглядело в этом волшебном свете потрясенное маленькое личико дочери, вы-

к возникновению общечеловеческой идеи Луны, выраженной в стихах, историях, мифах, астрологических теориях и религиозных учениях.

Люди воспринимали Луну и с научной, и с донаучной точек зрения. К ней подступались геометры, летописцы, наблюдатели за приливами и предсказатели затмений. Но на ночное светило также смотрели священники и оракулы, архитекторы и градостроители, земледельцы, охотники и ры-

позиционного эффекта, когда свет Солнца отражается от мелкодисперсной поверхности Луны и идет прямо к вам, наподобие того, как свет фар отражается от глаз кошки. Когда противостояние идеально, происходит лунное затмение и Луна на несколько часов оказывается в тени Земли.

боловы. Стремясь к научному пониманию Луны, мы не мо-

ее происхождения и развития неотделим от остального культурного контекста. Помимо любых геофизических, астрономических или космохимических характеристик, Луна имеет свой особый смыса

жем поспешно отмахнуться от всего этого. Научный анализ

мических или космохимических характеристик, Луна имеет свой особый *смысл*.

Чтобы добиться научного понимания Луны, мы должны проследить весь путь от первых попыток ученых разобраться в устройстве окружающего мира. Это означает обратиться

к временам, когда наблюдения касались конкретных, непо-

средственно видимых фактов, таких как диаметр (в полпальца) и положение в небе, когда натурфилософия была амальгамой идей и мыслительных привычек. В отличие от современного нам конвейера всестороннего анализа, наука в те времена скорее представляла собой брызжущий во все стороны фонтан идей, расширяющийся круг знаний, связанных с духовными поисками человека. Читая эту книгу, не забы-

вайте, что вы всегда можете перескочить через несколько абзацев или перейти к следующей главе, как только вам этого захочется, ориентируясь на иллюстрации, сопровождающие

текст в тех или иных главах. Язык линеен, но рассказу совсем не обязательно оставаться таковым.

Наука в нашем понимании существовала всегда, но со временем сфера ее интересов значительно расширилась, а

масштаб исследований пропорционально сжался. Философы были и астрофизиками, и теоретиками в области строения вещества. Астрологи – астрономами, теми, кто изучал и

возвращающееся обратно⁴, содержит в себе начальные представления о геологии и химии: благодаря огню дерево превращается в землю; металл приносит воду. Божества Древнего Бенина Маву (Луна) и ее брат Лиза (Солнце), отражая астрофизическую симметрию, порождали потомство во время каждого затмения. Затмения, кометы и другие небесные события изображались художниками каменного века в виде геоглифов, встречающихся в пустынных районах по всему миру и сохраняющих память о системах знаний, почти недоступных нашему пониманию. В каждой системе мышления соединяется научное и духовное: как объяснять окружающий мир в голове и в сердце. Тем не менее такие объяснения не могут быть чересчур духовными. В конце концов, на Луне есть несимметричные отметины, в которых одни видят человека, а другие кроли-

применял геометрию, измеряя мир. Химия была алхимией, чьи склянки, фиалы и атаноры обеспечивали материальное и сверхъестественное содержание астрологии. Колесо У-син, катящееся от дерева к огню, земле, металлу и воде, а потом

побеждает огонь, огонь побеждает металл, металл побеждает дерево. Эти циклы, возможно, соответствуют механизму образования землеподобных планет, если

считать, что дерево олицетворят собой органические вещества.

ка, хотя они не слишком похожи ни на то, ни на другое. Это

В донаучную эпоху воображение могло давать себе волю безо всяких ограничений, потому что тогда никто не видел поверхность Луны своими глазами, какими бы зоркими они

некоторые, это богиня Селена скачет боком на коне?

ровно столько фоторецепторов, сколько дано нам природой. Кроме того, люди обнаружили, что на Солнце есть свои повреждения, но они появляются и исчезают, – это *солнечные*

пятна, описанные китайскими натурфилософами, которые

ни были. Воздух искажает очертания предметов, а у нас есть

смотрели на дневное светило сквозь дым лесных пожаров. Пожалуйста, никогда не пытайтесь это повторить 5. За фундаментальными каденциями планетного движения

– день, месяц, год – скрываются неточности и тонкости,

для прояснения которых потребовались тысячи человеческих поколений, а также зарождение астрономии. Для обитающих на Земле животных не имеет никакого значения, что лунный и солнечный циклы не укладываются один в другой⁶,

ный Международный фиксированный календарь (каждый месяц в нем состоит из 28 дней), разработанный американским железнодорожным консультантом Мозесом Котсуортом, и в 1920-х гг. рекомендовал его другим бизнесменам. Его ком-

пания продолжала пользоваться этим календарем до 1989 г., выделяя 13 периодов оплаты, по 28 дней в каждом, и добавляя к последнему один день. (У моего бывшего работодателя были 20-дневные периоды оплаты, а также бонусный

⁵ Совершенно безопасно смотреть на Солнце в любительский бинокль с солнечными фильтрами – он стоит примерно 40 долларов; возможно, такой есть у вашего преполавателя естественных наук.

вашего преподавателя естественных наук.

⁶ Тем не менее это имеет значение для бухгалтеров. Бизнесмен и пионер фотографии Лукортук Истмен, основатель компании Кодак, выступал за 13 месян.

Тем не менее это имеет значение для бухгалтеров. Бизнесмен и пионер фотографии Джордж Истмен, основатель компании Kodak, выступал за 13-месячный Международный фиксированный календарь (каждый месяц в нем состоит из

вого года остается 10 или 11 дней. Но людям, которые хотят записывать информацию и объяснять любые подробности, это очень важно.

что между окончанием 12-го лунного месяца и началом но-

Появления и исчезновения планет можно предсказывать. Марс остается тусклым более года, а затем становится ярким

и наливается краснотой во время противостояния, когда какое-то время движется бок о бок с Землей по одну сторону от Солнца. Он высоко стоит и ярко светит – наступает пора

Ареса, которую часто считали предвестием грядущих войн. То, что сияющий Марс является предзнаменованием трудных времен, стало самоисполняющимся пророчеством. По-

добное же могущество было заключено и в предсказании затмений – вспомните легенду о Фалесе Милетском. В некоторые ночи звезды падают с небес, сгорая в атмосфере яркими

полосами. Что это предвещает? А как насчет величественных комет, чьи разноцветные хвосты ночи напролет видны по всему миру? Тогда, как и сейчас, за то, чтобы объяснить

все эти вещи, разворачивалось целое состязание. Мое божество или твое? Натурфилософия, магия, нелепые выдумки или современная наука? Человеческая культура насчитывает сотни тысяч лет, и ее

период; отсюда уже не далеко до древних вавилонян.) Котсуорт первоначально предлагал добавить 13-й месяц Сол между июнем и июлем. Конечно, Луна попрежнему вела бы себя, как ей заблагорассудится, выбиваясь из этого мерного шага, поскольку синодический месяц (от полной луны до полной луны) состав-

ляет 29,5 суток.

лее зрелищных кометах, чем те, которые когда-либо видели мы. Истории могли складываться и о взрыве соседней звезды, которая несколько недель сияла на небосводе ярче, чем полная луна, а потом превратилась в ведьмин круг, замет-

ный еще многие десятки лет. Что должен был думать об этом

первыми историями вполне могли стать рассказы о куда бо-

пещерный житель каменного века? Каждое человеческое существо во всем мире всматривалось в это кольцо; после такого ничто не могло остаться прежним.

Несмотря на странные и величественные события, нару-

шающие ход вещей, движение Земли, Луны и планет в целом является гармоничным. Это привело к появлению романтической идеи, что все *истинное* должно быть гармоничным, или, как это выразил юный Джон Китс,

В прекрасном – правда, в правде – красота, Вот все, что знать вам на земле дано⁷⁸.

це Солнечной системы, отражается в нашей литературе, живописи, скульптуре, музыке и архитектуре, а также в нашей науке, которая стремится к своего рода регулярности своей структуры.

Лежащая в основе всего гармония, ровно бьющееся серд-

Календарь – это наша попытка уловить ритмы Солнеч-

⁷ Пер. Г. Кружкова.

 $^{^{8}}$ Джон Китс, «Ода греческой вазе» (Ode on a Grecian Urn, 1819).

day, «день Солнца»), Monday (понедельник – Moon's day, «день Луны»), Tuesday (вторник - Tiu's day, «день Тиу», то есть Mapca), Wednesday (среда – Odin's day, «день Одина», то есть Меркурия), Thursday (четверг – Thor's day, «день Тора», то есть Юпитера), Friday (пятница – Freya's day, «день Фрейи», то есть Венеры), Saturday (суббота – Saturn's day, «день Сатурна»)¹⁰. Четыре недели по семь дней составляют месяц, который приблизительно равен орбитальному периоду обращения Луны вокруг Земли¹¹. Двенадцать с полови-⁹ Один оборот от полудня до полудня. $^{10}\,\mathrm{B}$ индуистском календаре также используются планеты, но в другом порядке: Солнце, Марс, Юпитер, Сатурн, Луна, Меркурий, Венера. В китайском календаре цикл планет выглядит так: Солнце, Луна, Марс, Меркурий, Юпитер, Венера и Сатурн. Предполагаю, что в том, как каждая культура распределяет планеты по дням, есть какой-то внутренний смысл. 11 День – это один оборот Земли вокруг своей оси, но за каждый такой день Земля проходит 1/365 часть пути вокруг Солнца, поэтому солнечный день на крошечную долю длиннее. Подобным же образом существуют синодический и сидерический месяцы. Сидерический месяц – период обращения Луны вокруг

Земли относительно небесной сферы, а синодический – период между двумя полнолуниями с учетом того, что стрелка, указывающая на Солнце, поворачивается приблизительно на 1/12 полного оборота за каждый лунный орбитальный период. Поэтому сидерический месяц равен 27,3 суток, а синодический, время

ной системы. Среди них важнейшим являются *сутки*, определяющиеся одним оборотом Земли вокруг своей оси, и для нас, людей, заключающие в себе один цикл бодрствования и сна, который необходим нам так же, как и пища⁹. Каждое название дня недели в английском календаре имеет астрономические ассоциации: Sunday (воскресенье – Sun's

круг Солнца. Все эти ритмы находятся где-то между биением человеческого сердца (примерно секунда) и сроком жизни (тысяча лун).

Когда-то люди не нуждались в часах и календарях: «зерно созреет через две недели» 12, «я вернусь к снежной луне»,

ной таких месяцев – это год, период обращения Земли во-

«это было тем летом, когда Марс светил очень ярко». Чтобы указать время, человек использовал Луну и Солнце; тут не оставалось места для разночтений. Каждая яркая звезда была знакома, и ни один новичок на ночном небе не оставался незамеченным. Самый темный небосвод, какой вы только видели, — таким было звездное небо для всех и каждого везтельно стояна доход потока

видели, – таким было звездное небо для всех и каждого везде, где стояла ясная погода. Лунный календарь – это живой организм; когда вы пытаетесь зафиксировать его на письме, он сопротивляется. После 12-й полной луны остается еще примерно 11 дней. По-

сле 365 дней остается где-то четверть суток, но не точно, что приводит к появлению високосных лет и прочих сложностей. Справляться с этими дополнительными днями и часами, решать, как собрать все это в единое целое, стало работой жрецов, чьи первые храмы одновременно являлись и обсерваториями, ориентированными по орбите и направлению вращения Земли, на восток, на запад и на восход в день

между полнолуниями и основа лунного календаря, – 29,5 суток.

¹² В оригинале автор использовал английское слово fortnight, которое бук-

вально значит «четырнадцать ночей». Астрономическое понимание понятия «fortnight» – половина лунного цикла, 14,77 суток.

памяти, накопленной с того начального момента, когда она была разбужена каким-то редким, непостижимым небесным зрелищем.

Специалисты по планетам работают с историями. Некоторые из них являются истиной, а другие «исходят из доступных нам знаний». Есть и такие, к которым мы только примериваемся: это смелые оценки и измышления в духе «а что, если», ограниченные современным состоянием физики, гео-

солнцестояния. Кто-то должен был описать божественный порядок, дать удовлетворительные объяснения смене сезонов, беспорядочным отметинам на Луне, кометам и метеорным дождям. И ни одна из этих религий не возникла в отрыве от предшествующего контекста, от суммы человеческой

логии, химии и математики, но отметающие всякие границы из-за того, что единственный путь к тому, чтобы доказать ложность утверждения, – это решительно заявить, что оно истинно. Таким образом, работа ученого заключается в том, чтобы искать факты и одновременно действовать как провокатор¹³. Наша планета появилась в результате мощных

¹³ Важно, чтобы у идей, которые, вероятно, неверны, были свои защитники – в этом смысл бессрочных профессорских позиций. Например, Ави Лоэб, глава кафедры астрономии Гарвардского университета, является сторонником гипотезы, что объект 1І/Оумуамуа, прилетевший из-за пределов Солнечной системы, в действительности представляет собой фрагмент межзвездного космического корабля или светового паруса. Очень важно, что он это делает. Теперь кто-то еще

может проследить выводы из этого предположения, довести их до абсурда и таким образом отбросить гипотезу. Или не отбросить, и в этом случае она будет становиться надежнее после каждой проверки. Либо так, либо гипотеза превра-

ле, чем сегодня; Луна в десять раз больше; Луна, сияющая в 100 раз ярче¹⁴. Ее испещренная кратерами и вулканами поверхность обращена к бешено вращающейся под ней Земле; она вызывает в земных океанах приливы высотой во много километров, заливающие первые континенты, — всего этого мы никогда не видели, но мы можем об этом догадываться. Геология началась. «Да соберется вода, которая под небом, в одно место, и да явится суша»¹⁵.

Теперь представьте себе две Луны, расположенные относительно друг друга у вас над головой как две вытянутые в разные стороны руки: большая размером с ладонь, а маленькая – с кулак. Они обращаются вокруг Земли в кольце других обломков и мелких тел. Над горизонтом восходит одна Луна – и тут же появляется другая, как мать и ее детеныш.

столкновений – это факт; Луна – их последствие. Из этого факта можно вывести идеи и образы, уже граничащие с фантастикой: Луна, которая находится в десять раз ближе к Зем-

Когда-то так оно и было.

щается в заявление, ложность которого невозможно доказать, как это произошло с теориями Бруно.

14 Галилео Галилей, «патриций из Флоренции», как он назвал себя на титульной странице одного из своих самых известных трудов «Звездный вестник» (Siderius Nuncius, 1609), ярко описал, как его 30-кратный телескоп сделал

Луну ближе: «В высшей степени прекрасно и приятно для зрения тело Луны, удаленное от нас почти на 60 земных полудиаметров, созерцать в такой близости, как будто оно было удалено всего лишь на две такие единицы измерения, так что диаметр этой Луны как бы увеличился в 30 раз». (Пер. И. Н. Веселовского.)

15 Бытие 1:9.

Тот, для кого и камень драгоиенность, на каждом шаги натыкается на сокровища.

Пер Лагерквист, «Карлик»¹⁶

Некоторые дети растут, мечтая о динозаврах, пожарных машинах или растениях; для меня не было ничего интереснее логики, математики и планет. Счастливее всего я был, когда гулял и думал о чем-то своем – как говорила моя мать,

витал в облаках. Но, кроме того, меня обуревала страсть к открытию и объяснению вещей, а для этого требовалось выйти из своего мирка, вначале обучая (ведь это единственный способ действительно разобраться в чем-то), а потом учась,

чтобы стать ученым, занимающимся происхождением планет и космическими экспедициями – всем тем, что стало темами этой книги. После университета я преподавал девятиклассникам предмет «Науки о Земле». Хотя я никогда не изучал геоло-

гию специально, мне удавалось подготовиться к тому, чтобы

учить других, потому что это такая интересная область. Она затягивает, и вскоре ты начинаешь смотреть на мир совсем другими глазами. Учебник, который мы использовали, был прекрасно написан и содержал отличные научные иллюстрации и схемы¹⁷. Один его экземпляр до сих пор лежит у меня дома. Я рассматривал топографические и батиметрические

¹⁶ Пер. В. Мамоновой.

¹⁷ Edward Tarbuck and Frederick Lutgens, Earth Science (Columbus, OH: C. E. Merrill Publishing Company, 1985).

и выйдут на орбиту. В атласе имелась голубоватая Венера чуть крупнее Земли – ошибка или вольная интерпретация художника, поскольку на самом деле эта планета желтая и немного меньше нашей. Была там и иллюстрация, показывающая, как возникли планеты: 5 млрд лет назад с Солнцем столкнулась другая звезда, в результате чего образовался шлейф газов в форме сигары (тоже синий), из которого,

словно бусины, сгустились планеты – крупные желтоватые в

карты на переднем и заднем форзаце так же внимательно, как огромный атлас 1960-х гг., который в моем детстве лежал у нас в гостиной и где на схеме подъема сверхзвукового самолета X-15 к границе атмосферы упоминалось, что астронавты проекта «Меркурий» вскоре поднимутся еще выше

середине и крошечные коричнево-пурпурные по краям 18. Я уже тогда имел так много знаний, что позже мне пришлось избавляться от многих из них!

Изучение астрономии и законов движения небесных тел отличается от овладения знаниями об инопланетных ланд-шафтах, по которым можно пройтись. Хотя наш учебник назывался «Науки о Земле», в конце там имелась общирная

шафтах, по которым можно пройтись. Хотя наш учебник назывался «Науки о Земле», в конце там имелась обширная глава о внеземной геологии – «странненькой геологии», как называл ее первый студент, писавший у меня курсовую рабо-

нечто совершенно иное, так что я называю ее гипотезой звездного столкновения.

¹⁸ Как мы увидим далее, эта система воззрений была популярна с конца XIX в. до середины 1920-х гг., и еще в 1960-е она находила отклик в сердцах ученых. В то время она называлась гипотезой планетезималей, чтобы отличаться от гипотезы туманностей Канта – Лапласа. Сегодня под планетезималями мы понимаем

своем сериале «Космос». Сильнее всего меня завораживали широкоугольные панорамы поверхности Венеры, где советские исследователи уже посадили полдюжины космических аппаратов 19, несмотря на то что плотная горячая атмосфера этой планеты может раздавить корпус подводной лодки (эти устройства выдерживали огромное давление) и растопить свинец. Другой разворот занимал впечатляющий вид на скованную утренним морозом равнину Утопия, запечатленный оснащенным множеством приборов посадочным моду-

ту, – снабженная фотографиями, сделанными космическими аппаратами нового поколения, которые к тому времени уже совершили посадки на Марс, Луну и Венеру, а также снимками, полученными устройствами серии «Вояджер» во время их дальних путешествий во внешнюю часть Солнечной системы. Это было то, о чем рассказывал Карл Саган в

да уже не было. Не забывайте, что все это происходило за пять лет до появления интернета²⁰, поэтому на изображения нельзя бы-

лем аппарата «Викинг». Я прибыл на Марс, и возврата отту-

чатных машин с цилиндром, которые заправлялись некои летучей жидкостью. Вы вращали ручку, чтобы долго и нудно делать копии с оригинала, на который

появления интернета²⁰, поэтому на изображения нельзя бы
19 В 1970-е и в начале 1980-х гг. в Советском Союзе была осуществлена феноменально успешная серия запусков автоматических межпланетных станций «Ве-

нера». В 1970 г. «Венера-7» стала первым космическим аппаратом, совершившим посадку на поверхность другой планеты (помимо Луны). Далее последовало еще полдюжины аппаратов, которые изучали атмосферу и химический состав грунта, а также отправляли на Землю детальные фотографии.

²⁰ Это была эпоха первого альбома Мадонны и ротапринтов – небольших печатных машин с цилиндром, которые заправлялись некой летучей жидкостью.

всемирной паутины была коробка с микрофишами, где хранился весь архив какого-нибудь журнала. В те годы свежий учебник обладал непревзойденной ценностью. Также исключительным успехом пользовались складные стереоскопы и альбомы-скоросшиватели с парными фотографиями, которые давали нам возможность «полетать» над поверхностью Земли. (К сожалению, в нашем распоряжении не было таких фотографий других планет.) Еще у нас имелся 20-сантиметровый телескоп Шмидта - Кассегрена, а также несколько зеркальных фотоаппаратов и лабораторных микроскопов из университетских излишков. Один друг школы купил нам фотолабораторию для проявки черно-белых снимков, которую установили в маленьком помещении между классными комнатами. У нас была коллекция минералов, которые можно было рассматривать и ковырять, а также по лупе на каждого ученика. Дети делали зарисовки и записи в рабочих тетрадях. Школа приобрела набор для шлифовки камней, капельницы с кислотой для обнаружения карбонатов, несколько сит и объемную физическую карту юго-востока Аризоны - на тот момент новинку, - которая в конце концов истерлась вы потратили всю предыдущую ночь, стуча одним пальцем по клавишам механической печатной машинки. Чернила должны были равномерно распределиться по 22 листам бумаги. Ручку требовалось крутить в хорошем темпе, один ваш друг в это время ходил пить кофе, другой - в курилку. Все остальные уже сидели в аудитории, потому что вы безнадежно опаздывали.

ло просто навести мышку. В большинстве библиотек имелись только устаревшие издания, а самым близким аналогом

от прикосновений пальцев, в том числе и моих собственных, пытающихся нащупать путь через горы. В качестве объекта изучения в нашем распоряжении имелась целая пустыня.

Первое изображение, полученное с другой планеты. В 1975 г. автоматическая межпланетная станция «Венера-9» совершила посадку в апокалиптическом ландшафте Венеры и выполнила ряд исследований, которые позднее будут многократно повторены в рамках советской космической программы 1970–80-х гг.

Ted Stryk, данные предоставлены Российской академией наук

Преподавание геологии пробудило во мне еще одно воспоминание тех времен, когда мне было около двух лет: мой отец обследует засохшее русло реки в холмах к востоку от Лос-Анджелеса, выискивая и переворачивая какие-то камни. Наша машина стоит под платанами; я помню пятна света, пробивающиеся сквозь листву. Мы приехали то ли на семейный пикник, то ли на экскурсию. Отец улыбается и подзывает меня, чтобы я на что-то посмотрел. Я помню его загорелое

гда не касался таких существ. А может, там была ящерица – одно из животных Нового Света, неизменно вызывавших у него восхищение. Но мне запомнились камни! Не думаю, что мне к тому времени попадалось нечто подобное: разбитые, изъеденные эрозией булыжники больше моих ладоней – зеленые, белые, черные и бледно-красные. В тени они были

лицо, прищуренные от солнца глаза, простые брюки, легкую рубашку и точные движения. Я бегу так быстро, как только могу в незнакомом месте, и добираюсь туда, куда он указывает. Русло перегорожено огромной веткой, в которой застряло несколько больших камней, образовавших нечто вроде скульптуры. Думаю, отец показывал мне ядовитого паука, спрятавшегося в тени между прутьями, — чтобы я нико-

зияли пустоты, заполненные песком, галькой и листьями. Это было мое первое полевое геологическое исследование. Я снова вспомню его, когда посадочный модуль «Гюйгенс» пришлет фотографии из полного булыжников русла потока на Титане. Меня всегда притягивали такие места.

холодными, на солнце - теплыми. Между самыми большими

k *

Половину имеющихся у меня знаний по геологии я получил, готовясь к своим урокам, поскольку мне нужно было о чем-то говорить. Остальные появились путем осмоса — впитывания идей в ходе общения и взаимодействия с хороши-

ставником²¹. Я дорос до понимания того, что у каждого собственный стиль преподавания, и научился ценить возможность контакта с юными умами. Именно благодаря такому осмосу я впервые почувствовал *структуру* науки, осознал

важность спорных идей вроде гипотезы Геи и гипотезы эво-

ми людьми вроде учителя биологии, который стал моим на-

люционного бутылочного горлышка, а также научился читать палеонтологическую летопись далеких времен, усвоив, что такое каменноугольный период, архей или кайнозой. Также я преподавал физику ученикам двух последних

классов. Мы проводили неделю за неделей, делая стробоско-

пические фотографии и выводя уравнения движения Ньютона с помощью поставленного под углом стола для аэрохоккея²². Мы вторгались на территорию математического анализа, который лучше всего изучать одновременно с законами движения, потому их можно понять интуитивно (мате-

матический анализ в какой-то форме работает в голове у любого человека, когда он, к примеру, ловит бейсбольный мяч)²³. Ученики все быстрее разгоняли нагруженный кирпи-

к тому, чтобы стать ученым.

²² Поскольку это была маленькая школа, я также преподавал английский девятиклассникам. В результате я понял, что учителя английского заслуживают более высокого жалованья или более малочисленных классов, поскольку им при-

ходится проверять так много работ и так много общаться с учениками. 23 Такой математический анализ прост; обозначим скорость как v, тогда уско-

определенной длины, чтобы вывести ньютоновский закон о том, что ускорение (на метры в секунду быстрее за каждую секунду) является постоянным, если сила постоянна. Они возились с пожертвованным нам оборудованием: проводили эксперименты с лазерным ретрорефлектором и построили аэродинамическую трубу, используя для визуализации потока воздуха зажженные сигареты (плохая идея). Мы учи-

чами скейтборд с помощью резиновой ленты, растянутой до

лись фотографировать с помощью камеры-обскуры — причем каждый ученик сделал свою собственную. Помимо знаний в области геометрической оптики, это дало им и представление о работе в лаборатории, поскольку они сами проявляли снимки в темной комнате.

ставление о работе в лаборатории, поскольку они сами проявляли снимки в темной комнате.
Это была крутая, абсолютно светоизолированная комната для проявления негативов с тусклым красным светом и фотоувеличителем для экспонирования отпечатков, с запасом

сменных светофильтров от желтого до пурпурного и ящиком, наполненным масками для изменения яркости отдельных участков изображения. Там же мы держали кюветы с проявителем, который следовало приготовить в нужной концентрации и довести до необходимой температуры. Ты помещаешь туда свой отпечаток на определенное число секунд, а потом промываешь его в закрепителе. Сегодня все суще-

мещаешь туда свой отпечаток на определенное число секунд, а потом промываешь его в закрепителе. Сегодня все сущерение записывается как dv/dt, где t – это время, а d – дифференциал. Так что ускорение – это изменение скорости при изменении времени, метры в секунду за секунду.

в темной комнате или карандашных зарисовок мы пялимся в мониторы и редактируем пиксели. Отчуждение между нами и тем, что мы изучаем, все нарастает.

ствует в виде цифровых данных. Вместо химических опытов

Однажды вечером, когда я уже работал в университете, мы с другом установили во дворе телескоп, чтобы студенты, посениалили мой вродин й курс но назыстологии мосям на

посещавшие мой вводный курс по планетологии, могли получить дополнительные баллы, посмотрев на Луну и Венеру. Молодые люди сменяли друг друга около окуляра, когда

мимо, направляясь к автобусной остановке, проходила аспи-

рантка с кафедры астрономии²⁴. – Ой, а можно мне взглянуть?

– Да, пожалуйста!

– Это Луна?

рового уровня в какой-либо области.

 Нет, Луна вон там! – показываю на яркий полумесяц несколько левее. – Это Венера.
 Аспирантка, подобно Галилею, поразилась, что Венера

выглядит совсем как серп Луны, только размытый и ярко-желтый, и воскликнула:

– Никогда еще не смотрела в телескоп!

Непосредственное восприятие фотонов солнечного света, которые доходят до нас, отразившись от верхней поверхности облаков Венеры, создает прямую связь с планетой. Но

кончил посещать занятия и теперь работает над тем, чтобы стать экспертом ми-

²⁴ Аспирант – это студент, который сдал все квалификационные экзамены, за-

над ними. Еще компьютеры обеспечивают нам свободный доступ к огромному количеству астрономической информации и данных об исследованиях планет, делая занятие наукой возможным для каждого, у кого есть интернет. Наберите в поисковой строке браузера слово «Энцелад», и у вас на экране появится прекрасный ледяной мир. Одно нажатие мышью на ссылку сайта лунных экспедиций – и вы уже са-

дитесь на Луну на «Аполлоне-17». Подключитесь к архиву Системы планетных данных (Planetary Data System) Национального управления по аэронавтике и исследованию космического пространства США (National Aeronautics and Space Administration, NASA) – и станьте первым исследователем

в использовании теоретических моделей, цифровых данных и компьютеров есть одно неоспоримое преимущество. С помощью опосредованных, но мощных методов мы можем уловить то, что никогда и не надеялись уловить, а потом бесчисленными способами обработать огромные потоки информации. В последнее время компьютеры все чаще упорядочивают, сжимают и даже интерпретируют такие потоки еще до того, как они доходят до нас. Такова реальность современного мира больших данных. Машины соединяют анаглифические стереопары в трехмерные изображения, позволяя нам воспринимать сложные цифровые ландшафты и даже летать

какого-нибудь марсианского кратера.

Не так уж долго осталось ждать и настоящего телеприсутствия, когда вместо того, чтобы возить пальцем по объемной

по освещенной тысячами огней лунной лавовой трубе в сотни метров высотой и километр шириной, наблюдая за тем, как еще до прибытия первых астронавтов прямо из лунной почвы печатается новое поселение. Этот опыт можно будет

сделать настолько реалистичным, насколько вы пожелаете.

физической карте, вы будете в реальном времени совершать виртуальные экскурсии: скажем, ваш аватар прогуливается

*

К середине 1980-х запуски космических шаттлов вызыва-

ли куда меньше интереса, чем исторические пуски аппаратов серии «Аполлон». Шаттлы не летали на Луну, они поднимались всего на несколько сотен километров на низкую околоземную орбиту, чтобы запускать спутники, проверять оборудование и технологии, а также строить Международ-

ную космическую станцию. Все это очень круто, и пуски были чрезвычайно зрелищными, но процесс превращался в рутину – на самом деле NASA *хотело*, чтобы он стал рутиной, отсюда их плакаты «На работу в космос» ²⁵. Тем не менее в школе, гле, я работал, мы все пристально следили за деся-

отсюда их плакаты «На раооту в космос» ²³. Тем не менее в школе, где я работал, мы все пристально следили за десятым стартом «Челленджера», потому что в его экипаже находилась первая учительница-астронавтка ²⁶. Тем ясным ян-

 ²⁵ Старты пилотируемых «Союзов» с космодрома Байконур были еще более рутинными, но их не показывали по телевидению.
 ²⁶ Криста Маколифф, учительница из Нью-Гэмпшира, была выбрана из более

ляцию этого пуска в прямом эфире. Ракета взорвалась, а все члены экипажа погибли, рухнув в море, как Икары. После того как прошел период вызванного шоком отрица-

варским утром каждый шестой американец смотрел транс-

ния²⁷, катастрофа «Челленджера» заставила пилотируемую программу NASA остановиться на несколько лет²⁸. Шаттлы были единственными аппаратами NASA, которые мог-

ли отправлять в космос большое количество научных гру-

зов, так что наука тоже на какое-то время замерла. Автоматическая межпланетная станция «Галилео» стояла следующей в очереди пусков: это была тяжелая, но хрупкая птичка, разработанная для того, чтобы провести годы на орби-

те вокруг Юпитера. Лаборатория реактивного движения (Jet

погибли все семь человек, находившиеся на борту.

налось полагаться на русских, чтооы доставлять в космос наших астронавтов. Ракета-носитель «Союз», которая продолжает оставаться одним из самых успешных крупных средств выведения на орбиту, никогда не подвергалась никаким

серьезным изменениям в конструкции. Зачем портить хорошую вещь? Соединенным Штатам следовало бы продолжать использовать ракеты «Сатурн-5».

чем 11 000 кандидатов, чтобы стать первым учителем в космосе.

27 Ожидалось, что провальным будет примерно один запуск на каждые 25, так

что катастрофа не была совсем уж ошеломляющей. Участвовавший в расследовании ее причин физик Ричард Фейнман пришел к выводу, что дизайн уплотнительного кольца не соответствовал ожидаемым погодным условиям и это привело к разрыву топливного бака «Челленджера». Ущербным было и общее конструктивное решение, когда носовой конус располагался прямо перед пилотируемым космическим кораблем. Куски теплоизоляции бака, отлетавшие с обтекателя ракеты, повреждали облицовку челнока, что в 2003 г. привело к катастрофе шаттла «Колумбия», который развалился во время входа в атмосферу. Тогда

 $^{^{28}}$ Это также создало интересную геополитическую ситуацию, когда нам пришлось полагаться на русских, чтобы доставлять в космос наших астронавтов. Ра-

временные технологии²⁹, чтобы этот аппарат мог выдержать самые тяжелые испытания. Он был рассчитан на семь лет полета в глубоком космосе, но в итоге провел там четырнадцать³⁰.

Проект «Галилео» и ранее сталкивался с отставаниями

Propulsion Laboratory, JPL) NASA использовала наиболее со-

Проект «Галилео» и ранее сталкивался с отставаниями от графика, характерными для любой значительной экспедиции, но теперь ему пришлось выносить тяготы складирования в условиях земного притяжения три лишних года, включая тряску в грузовике по пути от JPL до стартовой площадки во Флориде, потом демонтаж, путь обратно в JPL на

хранение, а затем, несколько лет спустя, еще одну транспортировку во Флориду. Его радиоизотопный источник энергии был еще в полном порядке, но один из главных меха-

низмов все же отказал. Когда «Галилео» наконец запустили, его похожая на зонтик антенна дальней связи для передачи данных на Землю не смогла раскрыться, поскольку застряли несколько ее спиц. Вся исследовательская програм
29 Технологии, используемые в программе «Галилео», застыли на уровне 1970-х гг. Такая «техническая заморозка» характерна для всех космических экспедиций, поскольку там используются только сертифицированные для космоса компоненты. Так, например, на «Галилео» для хранения информации использова-

лись катушки магнитной пленки. По мере того как некоторые ее сектора портились, инженеры подгружали на борт программный код, позволявший пропускать

каждый новый плохой сектор.

³⁰ Электроэнергию аппарат получал от радиоактивного распада 25 кг диоксида плутония. Поскольку период его полураспада равен 87 годам, на мощности источника энергии задержки почти не сказались.

мую информацию.) Едва ли тогда я мог предположить, что пять лет спустя стану новоявленным участником этой полной приключений экспедиции.

Вскоре после катастрофы «Челленджера» профессор геологии местного университета повез нас на экскурсию в пустыню к западу от города³², в красивый, богатый резкими контрастами и интересными леталями данлизфт. гле я из-

ма оказалась зависимой от запасной антенны, способной передавать менее 0,1 % данных. (Благодаря изобретению алгоритма сжатия изображений, который мы сегодня называем форматом JPEG³¹, большинства целей экспедиции оказалось возможно достичь, если передавать только самую необходи-

стыню к западу от города³², в красивыи, оогатыи резкими контрастами и интересными деталями ландшафт, где я часто бродил и в одиночку, но скорее подражая Уильяму Вордсворту, а не Джеймсу Геттону³³. Я со своими подопечными, а

31 В начале 1980-х гг., когда работа над программным обеспечением для «Галилео» завершилась, такой вещи, как сжатие изображений, еще не существова-

ло. Инженеры, изучавшие новейшие технологии сжатия, основанные на вейвлетах, решили проблему передачи данных с Юпитера и разработали алгоритмы, которые должны были быть подгружены в компьютерную систему космического аппарата и тщательно протестированы на борту. Это был значительный риск для уже и так подвергшейся испытаниям экспедиции, экранированный от радиации

компьютер которой равнялся по мощности выпускавшейся в то время машине Apple II.

32 Если у вас есть идея, чем можно час (или даже все утро) заниматься с целым классом школьников, сделайте доброе дело и сообщите в вашу местную школу. Учителя будут вам благодарны. А если у вас есть какое-либо качественное оборудование, например микроскопы и телескопы, которое можно пожертвовать ма-

ленькой школе, это тоже будет здорово! 33 Уильям Вордсворт – английский поэт начала XIX в., чей подход к странстви-

утру набились в желтый автобус и отправились в небольшое путешествие. К нашему восторгу, до рассвета выпал сантиметр снега, поэтому кактусы стояли в белых шапках – великолепное зрелище! Когда мы заехали на грунтовую парковку, высыпавшие из автобуса дети сразу принялись играть в

снежки и валять дурака. Потом мы прошли километр вниз по тропе, следовавшей вдоль старого русла³⁴. Мы обошли его изгиб – по какой-то причине это тоже отпечаталось в моей памяти – и вышли к огромной наклонной плите, сложенной

также учителя биологии и химии со своими – мы все рано по-

песчаниками и аргиллитами, красными и желтовато-коричневыми, с глубокими следами волновой ряби в несколько пальцев шириной. Когда-то она была частью древнего пляжа, сказал нам профессор, а потом на протяжении миллионов лет то погружалась вглубь, то вновь выходила на поверх-

ность.

Я был заворожен текстурой этой скалы. То, что говорилось на этой и других геологических экскурсиях, начало рассеивать некий туман, понятийный застой в моей голове. Профессор рассказывал, что там, где мы стояли, когда-то

ям на природе мне очень нравится. Джеймс Геттон – шотландский геолог середины XVIII в., который первоначально был фермером. Он основал седиментологию и привил западной науке представления о глубоком геологическом времени.

дины XVIII в., который первоначально был фермером. Он основал седиментологию и привил западной науке представления о глубоком геологическом времени. ³⁴ Русла пустынных потоков могут быть широкими, как река, но вода по ним течет только в период муссонов.

стояние в добрую сотню километров. Это был результат эрозии поднимавшихся там в тот момент гор. Осадочный материал перемещался древними реками по давно исчезнувшим долинами и приносился в виде пыли миллионами бурь. Это то, что я помню. Уверен, какие-то детали я путаю, но

это описание казалось осмысленным... Реки текут и вызы-

крытые рябью слои, поступали с востока, преодолевая рас-

вают эрозию, океаны катят волны на песок, горы поднимаются... Трудно было понять следующую часть — то, что эти борозды в песке и иле были захоронены под слоями нового ила, стали частью дна древнего моря, затвердели под тяжестью более поздних отложений, тоже со временем превра-

тившихся в камень, а миллионы лет спустя были вновь выведены на поверхность, когда *из-под всего этого* поднялись ввысь новые горы. От таких мыслей начинала кружиться голова. Время и пространство расширялись.

Солнце палило. Посвятив еще некоторое время серьез-

солнце палило. Посвятив еще некоторое время серьезным делам, мы принялись по очереди позировать для дурацких фото, притворяясь, что мы занимаемся серфингом на пляже. Но у меня возникло беспокойное чувство, которое в следующие несколько дней превратилось в настоящее откровение. Мне приходилось проходить в этом месте и рань-

никогда не знал, что было вокруг меня и под моими ногами. Прежде чем уйти, я снова провел пальцами по песчаной ряби, появившейся 10 млрд дней назад. Реальность оказалась

ше, я смотрел на холмы, высохшие русла и далекие горы, но

гораздо масштабнее, чем я себе представлял.

* * *

Ученые постоянно размышляют на ходу над одним или двумя большими вопросами, из-за чего им случается терять счет времени или натыкаться на ветки. Мой собственный большой вопрос звучит так: если планеты появились из облаков первичного вещества, обращающегося вокруг Солнца, почему они не оказались более или менее одинаковыми, как дождевые капли, сконденсировавшиеся из тучи, или стога сена на скошенном поле? Две самые большие планеты нашей системы, Юпитер и Сатурн, действительно в чем-то схожи - это две сферы, состоящие по большей части из водорода (Н) и гелия (Не). Следующие по величине планеты, Нептун и Уран, кажется, схожи еще больше – гигантские сферы, состоящие в основном из Н2О, Н и Не, хотя, если уж начистоту, мы пока не посылали экспедицию ни к одной из них. Все это гигантские тела, имеющие атмосферу. Если говорить о среднем размере - о том, что мы можем назвать планетами человеческого масштаба, о телах, по которым мы могли бы гулять, по крайней мере в принципе, - то они так же разнообразны, как государства Европы, особенно если учитывать такие тела, как Плутон и Титан, обладающие всеми геологическими характеристиками планеты.

Фотография поверхности Титана, спутника Сатурна, переданная 14 января 2005 г. посадочным модулем «Гюйгенс» (ESA/NASA).

Наша планета Земля началась с роя ледяных и каменистых тел, обращавшихся вокруг Солнца и постепенно выраставших в планеты. Сформировавшиеся первоначально пла-

ESA/NASA/JPL/University of Arizona

неты сталкивались друг с другом, соединяясь в более крупные тела и их спутники. От них откалывался всякий мусор, смешивавшийся с остатками первоначального роя в хаотичный ансамбль, известный нам теперь как кометы и астероиды. Спустя 100 млн лет суматоха поутихла: столкновения продолжались, пока планеты не стали двигаться по непересекавшимся путям. Все крупные соударения, которые должны были произойти, произошли, и система стала стабильной, как часовой механизм. Ну или почти как часовой механизм. В этой книге рассказывается об истоках многообразия планет. Чтобы не опережать ход повествования, давайте просто скажем, что почти каждая планета и почти каждый спутник планеты, когда-либо существовавшие в Солнечной системе, были поглощены телом более крупным, чем они са-

ми, и что этот факт невероятно важен. Большинство планет сейчас находятся внутри газовых гигантов (Юпитера и Сатурна) или Солнца, а еще часть – внутри Урана или Нептуна. Считается, что существовало еще два или три гиганта,

у большинства из них есть планеты. Мы живем на сложно устроенной голубой планете, и это так необыкновенно, что вопросы встают перед нами практически помимо нашей воли: что такое реальность? Что такое время? Уникальны ли мы во Вселенной? Геологические явления, которые нам предстоит обнаружить по всему космосу, могут заставить Венеру, Энцелад, Ио и Хаумею показаться чем-то зауряд-

ным; мы только начинаем догадываться о странностях, кото-

по массе примерно равных Нептуну, но они были поглощены Солнцем или выброшены из системы скитаться по Галактике. Многообразие — это вопрос того, что у нас осталось: ни одной *обыкновенной* планеты мы не наблюдаем. Почти каждое из когда-либо существовавших тел поглощено более крупными; оставшиеся — это счастливчики, необычные уже

Человеческое любопытство, ведомое наукой и усиленное гигантскими телескопами, обнаружило сотни миллиардов галактик, в каждой из которых есть сотни миллиардов звезд. Звезд во Вселенной намного больше, чем песчинок на Земле, – 100 млрд триллионов, или 10²³, – и мы полагаем, что

тем, что они выжили.

рые, возможно, ждут нас там.

Улитка – это геолог, который ощущает неровности камня, его температуру и влажность. То же самое можно скаРаскрошится ли он или расколется в основном в одном направлении? Какого камень цвета, какая у него поверхность, какой вес? Как он пахнет? Все это *ощутимые факты*, они доступны любому существу, имеющему органы чувств. Из такого опыта можно извлечь непосредственную пользу.

Неощутимое – это то, что нельзя почувствовать, но мож-

зать о еноте, исследующем отмель в поисках улиток. Геологические исследования приматов более изощрены. Можно ли поцарапать этот камень тем? Пойдет ли он трещинами?

но обнаружить с помощью более совершенных технологий. Классические примеры — это телескоп, который расширяет охват наших органов чувств, и микроскоп, который его сужает. В обоих приборах стеклянные линзы используются для того, чтобы изменить и усовершенствовать зрение, причем (в классическом случае) наши глаза воспринимают те самые фотоны, которые отражаются или испускаются звездой, планетой или крылом мотылька.

целые здания, а зеркала телескопов весят десятки тонн³⁵. От совершенствования оптики и усиления увеличения мы перешли к сбору данных *дистанционных измерений* всеми возможными способами по всему спектру электромагнитно-

Современные исследовательские микроскопы занимают

бежным силам придать ему почти параболическую форму. Архимед был бы впе-

чатлен.

возможными способами по всему спектру электромагнитного излучения. Космический аппарат на орбите какой-нибудь

35 Главное зеркало Большого обзорного телескопа весит 17 тонн и имеет диаметр 8,5 м; его отлили в огромной вращающейся печи, что позволило центро-

парат, хоть он и не способен принимать научные решения, имеет доступ к куда большему числу способов восприятия, чем астронавт, который в лучшем случае может рассматривать мир вокруг через стекло шлема и осязать поверхности сквозь громоздкие перчатки, но в чьем разуме заложена способность видения — того рода, которое никак не связано с глазами, — и исследования и чье тело обеспечивает взаимо-

далекой планеты может собирать потоки информации от лазерных интерферометров, тепловизоров, рентгенофлуоресцентных спектрометров, детекторов нейтронов, подповерхностных радаров и так далее. Современный космический ап-

Самый мелкий масштаб нашего непосредственного восприятия — это то, чем ограничено осязание и зрение, примерно 0,1 миллиметра, тонкий волос или крупная песчинка. В нашем распоряжении есть и множество куда более чувствительных специализированных сенсоров, работа-

действие разума с тем, что его окружает.

ющих вплоть до молекулярного уровня. Самые большие значения на той же шкале — размеры человеческого тела, метр или два³⁶. Менее заметная, но столь же фундаментальная — ³⁶ Тело сухопутного млекопитающего имеет размер порядка 1 м, потому что оно должно удерживаться вместе в гравитационном поле планеты, а это требует

пело сухопутного млекопитающего имеет размер порядка т м, потому что оно должно удерживаться вместе в гравитационном поле планеты, а это требует 10 кг кожи и еще нескольких килограммов расположенных под ней фасций и соединительной ткани, которые вертикально поддерживаются скелетом и длинными сильными мышцами. Более крупные тела требуют гораздо более прочной конструкции, больших расходов энергии и более крупной мускулатуры, которая выполняет больше работы. Это приводит к выделению большего количества тепла, которое нужно выводить из более массивного тела. Так что для более круп-

рия мозга. По некоторым оценкам, мы задействуем до половины вычислительных ресурсов бодрствующего мозга, совмещая в зрительной коре левые и правые изображения, чтобы создавать свою трехмерную реальность.

Вследствие этого чуть ли не самыми важными для людей данными, получаемыми в ходе космических исследований, становятся пары фотографий, сделанные в одинаковых условиях освещенности (обычно примерно в одно и то же вре-

мя), которые разнесены на угловое расстояние около 7°, что-

характеристика нашего восприятия — примерно шесть сантиметров, в среднем разделяющие человеческие зрачки. За этими разнесенными объективами наши сетчатки создают стереопары, которые направляются в левое и правое полуша-

бы поддерживать работоспособность большого мозга, но достаточно малы, чтобы перемещать его туда, куда нужно. То есть тот наш размер, возможно, является оптимальным для разумных существ, живущих на поверхности планеты с земной гравитацией.

37 Самый простой и недорогой способ создания трехмерных изображений – это анаглиф, где левое изображение стереопары проецируется в красном свете, а пра-

вое – в синем. Зритель надевает очки с соответствующими стеклами, которые пропускают в левый глаз только красный свет, а в правый – только синий. Мозг совмещает эти два набора данных как один черно-белый объемный объект.

ре, создавая тем самым многоцветный виртуальный объект, который можно рассмотреть с разных точек зрения или даже прогуляться в его внутреннем пространстве³⁸, расширив тем самым границы того, что мы ощущаем как реальность.

Узнавать более труднодоступные неощутимые факты можно в базовых лабораториях по всему миру, где самые точные инструменты используются для того, чтобы фикси-

ровать отдельные атомы во фрагментах земных пород, метеоритов и лунных образцов. Занимающие целые комнаты масс-спектрометры могут определить точное содержание химических элементов в частичке, которая в миллион раз меньше песчинки. («В одном мгновенье видеть вечность, огромный мир – в зерне песка…»³⁹⁴⁰) Из такой информации

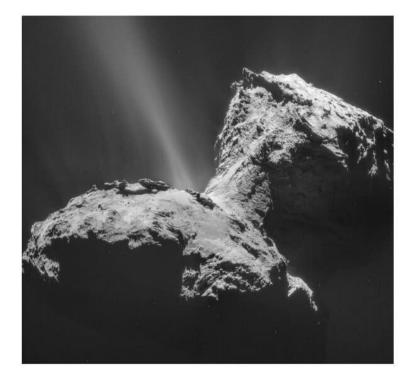
ши мы можем поворачивать невероятно странное по форме ядро кометы, известной как 67Р/комета Чурюмова – Герасименко, и накладывать на него любую другую информацию, например данные спектроскопии или сведения о температу-

мы, в принципе, можем получить для примитивного тела (ядра кометы или ма-

ленького объекта пояса Койпера) что-то похожее на КТ или УЗИ в высоком разрешении. Это достаточно простая научная задача. P. Sava and E. Asphaug, "3D Radar Wavefield Tomography of Comet Interiors," *Advances in Space Research* 61,

Radar Wavefield Tomography of Comet Interiors," *Advances in Space Research* 61, 2018.

39 Пер. С. Я. Маршака.


¹¹ер. С. *Я.* Маршака.

40 Уильям Блейк, «Прорицания невинности» (Auguries of Innocence, 1803).

пример, о том, как формировались планетезимали и планеты. Такие аналитические лаборатории так же дорого строить и содержать, как и астрономические обсерватории; отличие лишь в том, что, вместо того чтобы смотреть вовне, их сотрудники вглядываются внутрь фрагмента породы, совершая открытия в нанодиапазоне, ненамного превышающем

размеры самих атомов.

рода), в которых вырос конкретный кристалл, и его атомную структуру. На основе этого мы можем выстраивать целые истории и опровергать или уточнять другие истории – на-

Комета 67Р/Чурюмова – Герасименко, около 4 км длиной от одного конца до другого, – первая комета, на орбиту вокруг которой вышел космический аппарат. Эта фотография сделана с расстояния 28 км от центра ядра, размер кадра составляет 4.6×4.3 км.

ESA/Rosetta/NAVCAM (CC BY-SA IGO 3.0)

Это кажется волшебством, но вся эта абракадабра тесно

кидывают устоявшиеся теории и порождают новые. Совсем как в детективных рассказах, где случайно найденная мелкая улика меняет все. Для того чтобы делать такие скрупулезные замеры, требуется невероятная техническая точность – на-

связана с математикой, поскольку доводит дедукцию до ее теоретически возможного предела. В науке вы следуете за математикой туда, куда она вас ведет. И очень часто – почти всегда – вы обнаруживаете, что хвост виляет собакой, иначе говоря, что именно данные о самых мелких или самых отдаленных объектах, которые только можно представить, опро-

инженерных наук: например, от фокусировки ионного луча с точностью до нанометров или от запуска в космос гигантского телескопа. Космический телескоп «Джеймс Уэбб» должен будет закрепиться в стабильной точке L₂ системы Зем-

доставить все оборудование на место. Это может звучать странно, но оптические телескопы диаметром в несколько километров возможны, и даже вероятны. Используя флот маленьких космических аппаратов, несущих зеркала в строго определенном порядке, мы сможем выяснить скрытые от нас пока характеристики

пользуя флот маленьких космических аппаратов, несущих зеркала в строго определенном порядке, мы сможем выяснить скрытые от нас пока характеристики Вселенной и ее планет. Научный прогресс идет в ногу с технологиями фиксации явлений внешнего мира.

ля – Солнце, где его сегменты соединятся, чтобы сформировать зеркало диаметром 6,5 м, в три раза больше, чем у космического телескопа «Хаббл». Поскольку там не будет никакой силы тяжести, ветра или атмосферы, а температура может быть точно отрегулирована с помощью светозащиты, мы сможем забыть о главных проблемах всех гигантских оптических зеркал. Штука только в том, чтобы

Легко попасть в ловушку восприятия земной геологии

как данности. Вот мы вдыхаем и выдыхаем азот, кислород и некоторое количество аргона, углекислого газа и других газов, заменяя часть O_2 на CO_2 в рамках нашего самого важного биологического процесса – дыхания. Кислород хорошо

знаком нам в газообразном состоянии; тем не менее почти все запасы кислорода на Земле находятся в составе горных пород, где бы и оказался весь атмосферный кислород, если бы он постоянно не высвобождался из CO_2 и H_2O занятыми фотосинтезом растениями⁴².

Половина массы силикатной оболочки Земли – всего, что

окружает металлическое ядро, — приходится на кислород. Он содержится в минералах вроде оливина (Mg, Fe) $_2$ SiO₄, который состоит из двух атомов магния или железа, а также

одного атома кремния и четырех атомов кислорода. (В кос-

 $^{-42}$ Основное уравнение фотосинтеза, использующего солнечный свет для производства глюкозы, выглядит так: $6\text{CO}_2 + 6\text{H}_2\text{O} \rightleftharpoons \text{C}_6\text{H}_12\text{O}_6 + 6\text{O}_2$. Эрозия горных пород также связана с углекислым газом, который, растворяясь в воде (на-

пример, в океане), создает слабый раствор углекислоты ${\rm H}_2{
m CO}_3$, разлагающей минералы до глин и карбонатов. Если бы не фотосинтез, весь свободный кислород уходил бы на создание на морском дне грязи из минералов, смываемых в океан течением рек. Так что присутствие кислорода в атмосфере планеты является указанием на наличие там фотосинтеза, хотя существуют и абиотические пути синтеза свободного кислорода.

кислорода, но не переживайте, если не сможете чего-то понять – на самом деле ее не понимает никто. Каждый из этих атомов был создан в ходе термоядерного

мохимии горные породы относятся к *оксидам*.) Рассуждая таким образом, мы должны немного углубиться в историю

синтеза в ядрах древних звезд – об этом мы более подробно поговорим через несколько глав. Тип атома определяется числом протонов в его ядре; например, атом кислорода содержит восемь протонов, вокруг которых обращаются во-

семь электронов (чтобы атом оставался электрически нейтральным), а также некоторое число нейтронов. В стабильном атоме кислорода может быть восемь, девять или десять нейтронов – так получаются *изотопы* ¹⁶О (с огромным от-

рывом самый распространенный), 17 O и 18 O, обозначаемые в соответствии с их атомной массой (суммарным количеством нейтронов и протонов). Химически все они ведут себя практически одинаково, хотя 17 O и 18 O несколько тяжелее и чуть

более инертны в ходе реакций.

Относительное содержание изотопов незаметно, если не использовать масс-спектрометр – прибор, который определяет долю отдельных атомов в минерале ⁴³. Но, поскольку они

мы, придавая им единичный заряд. Затем пучок этих ионов проходит через магнитное поле и расщепляется. Чем массивнее атом, тем меньше он отклоняется при одном и том же заряде. Так что по сути вы просто взвешиваете атомы и об-

⁴³ Масс-спектрометр – одно из самых замечательных изобретений в истории. Основная идея состоит в том, что вы ионизируете (изымаете один электрон) ато-

имеют разную массу, изотопы кислорода отбираются и сортируются. Испарить молекулу H₂O с изотопом ¹⁸O немного труднее, чем такую же молекулу с изотопом ¹⁶O. К приме-

ру, в ледниковый период, когда испаряющаяся из океанов вода переносится на сушу и оседает в виде снега на все расширяющийся ледяной щит, получившиеся в результате ледники накапливают более легкий кислород, тогда как океаны

оказываются обогащенными тяжелым кислородом. Когда в разгар ледникового периода мелкозернистые осадки и карбонаты оседают на дно такого моря, возникающие в итоге породы, в свою очередь, также обогащены тяжелым кислородом. Применив масс-спектрометрию к образцам, полученным при глубоководном бурении, любой дипломник может

ментарном графике. Сегодня полярные льды тают, поэтому в летописи осадоч-

проследить древние климатические процессы, как на эле-

наруживаете, что в некоторых из них на один или два нейтрона больше, чем в других. У большинства элементов есть один или два стабильных изотопа, то есть

изотопа, которые не подвергаются радиоактивному распаду, превращаясь в другие элементы. Очень интересен элемент ксенон, у которого стабильных изотопов восемь (132 Xe, 129 Xe, 131 Xe, 134 Xe, 130 Xe, 128 Xe, 124 Xe, 126 Xe). Поскольку ксенон является благородным газом и не вступает в реакции с другими веществами, соотношение этих изотопов остается постоянным на протяжении геологической

эволюции планеты и ее атмосферы, за исключением тех случаев, когда присутствует разделение их по массе. Каждый элемент и его изотопы рассказывают свои истории: ксенон говорит об атмосферах, кислород – об оксидах (горных породах и воде), гафний дает информацию о формировании ядра, а свинец - о кристал-

лизации.

сохранятся в будущих горных породах. Это одна из причин, по которой нам важно получить образцы ранних осадочных пород с Марса: не только для того, чтобы найти там окаменелости микроорганизмов (если они вообще есть), но и потому, что, если аккуратно отбирать пробы, эти породы могут содержать комплексную информацию об океанах и оледене-

нии Марса в далеком прошлом. Если даже окаменелости живых организмов никогда не будут там обнаружены, характерные признаки жизни можно будет разглядеть в изотопном составе органических компонентов горных пород — аналоге той летописи, которую мы расшифровываем, чтобы узнать о

ных пород нашему времени будет соответствовать более легкий кислород. Более легкая вода, попавшая когда-то в ледяную ловушку, наконец возвращается обратно в океан. Свидетельства того, что происходит на суше, в океане и в воздухе,

жизни на Земле 4 млрд лет назад. Земля испещрена метеоритами. Почти все они являются фрагментами околоземных объектов, которые, в свою очередь, по большей части представляют собой осколки астероидов Главного пояса и комет. Но удивительно заметная их доля попала к нам с поверхности Марса. Доказывается это так: метеориты группируются по соотношению изотопов кислорода и других элементов, соответствующему различ-

ным астероидам, сформированным в той или другой области вокруг Солнца⁴⁴. Одна из этих групп любопытна, потому что

⁴⁴ О том, как возникло разнообразие в изотопном составе кислорода, идут бур-

ного, чтобы на нем были вулканы. Марс богат огромными вулканами и находится относительно недалеко от Земли; то же самое относится и к Луне.

Решающим аргументом в изучении того, что мы сегодня называем марсианскими метеоритами, стал точный геохимический анализ содержания благородных газов — элементов вроде аргона и ксенона, у которых полностью заполнена внешняя электронная оболочка, в результате чего они не

вступают в реакции. Эти газы не создают молекул, поэтому, когда лава кристаллизуется на планете с атмосферой, а не на спутнике, они захватываются в пустоты и могут быть про-

состоит в основном из базальтовых пород. Кислород можно обнаружить в любой породе, поэтому эта группа метеоритов должна была прибыть с планетоида достаточно круп-

с любым метеоритом или с горными породами на Земле, Луне и Марсе. Выходит, что некие процессы в туманности отводили более легкий кислород в значительном количестве. Возможно, это напоминало то, как при замерзании и таянии ледников легкий кислород может вытесняться и накапливаться на Земле. Эти процессы вытеснения шли в разных местах по-разному, создав различные резервуары кислорода на расстояниях орбиты Марса и орбиты Земли. По край-

ней мере, такова гипотеза.

бы на целую садовую тачку, а это только находки последних веков. Оглядываясь в прошлое, как и пристало геологам, мы можем предположить, что миллиарды тонн камней, выбитых кометами и астероидами с марсианской поверхности, попали на Землю за примерно 4 млрд лет существования тут жизни.

Выяснилось, что марсианские метеориты достаточно широко распространены. Тех, что хранятся в музеях, хватило

Так зачем лететь на Марс, чтобы собирать образцы, когда метеориты доставляют их нам совершенно бесплатно? Затем, что те камни, которые нам бы хотелось изучить, все еще находятся на Марсе.

Большинство марсианских метеоритов состоят из проч-

Большинство марсианских метеоритов состоят из прочных поверхностных пород магматического происхождения вроде базальтов. У нас нет ни одного образца осадочных пород, которые представляли бы наибольший интерес с точки зрения биологии. Такие породы обычно непрочны и не выдерживают выброса в космос. Если они не разрушаются

при первоначальном столкновении, то подвергаются термическому растрескиванию по пути к Земле⁴⁵; если и этого не происходит, они взрываются при входе в земную атмосферу со скоростью 20 км/с. Базальты с большой вероятностью переживут все эти испытания, а вот осадочные породы – едва ли.

⁴⁵ Для полноты картины не будем упускать возможность того, что достаточно крупный фрагмент станет околоземным объектом марсианского происхождения, а затем разрушится, бомбардировав Землю марсианскими метеоритами.

Тем не менее осадочные породы могут попасть с Марса на Землю. В целом для этого требуется, чтобы в космос был выброшен более массивный скальный фрагмент, для чего нужно столкновение с астероидом, диаметр которого будет со-

ставлять несколько десятков километров, а такого не случалось уже миллиард лет. Но 4 млрд лет назад, в период зарождения жизни на Земле, подобные события происходили постоянно. Нам нужно отправиться на Марс и собрать образцы осадочных пород не только для того, чтобы узнать, есть ли там жизнь (в виде живых организмов или окаменелостей),

но и для того, чтобы дополнить наши представления о *пан*спермии — возможном процессе распространения жизни по небесным телам Солнечной системы, а может, и разных галактик. Располагаясь гораздо ближе, Луна посылает на Землю еще больше бесплатных образцов в форме метеоритов. Их сейчас

собрано более 300 кг. Такие метеориты находят внутри ледяных щитов и в песчаных пустынях. Объяснить это очень просто: если метеорит приземляется там, где много земных камней, вы едва ли сможете различить его среди прочих. Лунные камни также имеют магматическое происхождение и несут следы ударов, полученных и за время пребывания на Луне,

и в момент столкновения, в результате которого они были выброшены в космос. Многие из них повреждены космическими лучами и несут ионы солнечного ветра, из чего можно сделать вывод о целых геологических эрах, проведенных

После того как астронавты программы «Аполлон» доставили на Землю сотни килограммов лунных пород, надежная идентификация лунных метеоритов не представляет особых

ими на поверхности лишенного атмосферы небесного тела⁴⁶.

трудностей.

Однако анализ относительного содержания изотопов кислорода не позволяет отличать лунные камни от земных, как

это происходит в случае Марса. В том, что касается изотопного баланса кислорода и других элементов, они *идентичны* с точностью до одной миллионной доли. В самом деле, валовый состав Луны с точки зрения космохимии практиче-

ски неотличим от сухой мантии Земли. Это открытие подорвало доверие к гипотезе ударного образования Луны, по-

скольку, согласно классическому ее варианту, Луна состоит в основном из материала столкнувшейся с Землей планеты Тейя, который должен походить на земной не больше марси
46 А как насчет метеоритов, выброшенных с Земли и снова вернувшихся на нее тысячи или даже миллионы лет спустя? Горные породы легко выбрасываются с поверхности Луны в ходе образования кратеров достаточно скромного разме-

ра, и они с большой вероятностью падают на Землю, если им удается вырваться из пут лунного тяготения. С Землей все по-другому. Она обладает мощной атмосферой, так что только очень крупный импактный кратер может извергнуть

ся на геологически неактивной Луне.

большое количество осколков, которые смогут преодолеть значительную гравитацию Земли. Почти все они в течение миллиона лет либо столкнутся с Землей, либо будут рассеяны, так что, если только крупный кратер не появился на нашей планете достаточно недавно (а такого не было), метеоритов с Земли будет очень мало, если они вообще будут. Как мы обсудим ниже, порода, изверженная из древних крупных кратеров на Земле, с большей вероятностью может сохранить-

ния и варианты, дискуссия о механизме формирования Луны в целом вернулась к позициям XIX в., когда многие полагали, что спутник был вырван из Земли с образованием бассейна Тихого океана. Возможно, эта идея в конечном итоге

не так уж плоха? Вся эта неопределенность показывает, как

скромны наши знания.

анского. Пока специалисты по компьютерному моделированию и теоретики продолжают выдвигать новые предположе-

* *

Если вы заблудились, идите назад по своим следам. Вернитесь к исходной точке. Водород, имеющий единственный протон, – самый распространенный элемент во Вселенной,

а следующий за ним – это гелий с двумя протонами. Они сформировались в ходе Большого взрыва. Кислород идет третьим: его стало куда больше после того, как взорвались

ядра первых гигантских звезд. Таким образом, одно из самых часто встречающихся химических соединений — это вода, H_2O .

Что за удивительная молекула! Еще до того, как появились планеты, вода играла главенствующую роль в определении структуры будущей Солнечной системы. Диск вокруг

Солнца, из которого сформировались планеты, первоначально был в основном газообразной *протопланетной туманностью*. Давление в ней оставалось достаточно низким, чтобы

тех мест, где она могла кристаллизоваться в твердое вещество. На далеких расстояниях свыше двух или трех астрономических единиц вода могла конденсироваться в иней, и он, возможно, образовал зародыши так называемых кометезималей, отдаленных предков комет. Ближе к Солнцу температура была выше, так что там конденсировались в основном силикаты, образовывая состоящие из горных пород планетезимали. Эта идея «ледяной линии» получила популярность как основа для понимания того, почему ближе к Солнцу расположены землеподобные планеты, состоящие из горных пород, а дальше от него – газовые и ледяные гиганты, а также ледяные карлики. Однако строение экзопланетных систем может заставить нас пересмотреть эти воззрения. Значительные объемы жидкой воды не могли образоваться, пока планетезимали не стали достаточно большими, чтобы обеспечивать силу тяготения, способную удерживать атмосферу, и поверхность, где такая вода могла бы конденсироваться. Так появились первые океаны, которые подогревались или сверху энергией Солнца, если находились достаточ-

вода существовала там только в виде пара, за исключением

лись или сверху энергиеи Солнца, если находились достаточно близко к нему, или снизу, благодаря радиоактивному распаду. На этих добиологических кухнях жизни закипела работа. Сегодня мы наслаждаемся существованием на планете, физические условия на поверхности которой позволяют воде находиться в состоянии бесконечного круговорота между жидким, твердым и газообразным состоянием в окрестности

ваться дождем, выпадать в виде снега, таять и испаряться, оказывая влияние на самые разные физические и химические процессы и циклы, которые определяют земную геологию и биогеохимию⁴⁷.

Вода, этот универсальный растворитель, вымывает моле-

кулы из мелких зерен минералов в горных породах, образует и переносит осадочные материалы, а также облегчает или делает возможным почти неограниченный спектр химических

так называемой *темпочки* воды. При давлении и температуре в этом диапазоне вода может снова и снова проли-

и физических процессов, начиная с разрушения твердых веществ и их переноса флюидами. Где-то в ходе этих процессов молекулы научились распадаться на части и собираться обратно, воспроизводя самих себя.

Жидкая вода распространена и во внешней части Солнечной системы, где тепло поступает из-под поверхности ледя-

зывает планета, циклически деформируют очертания спутника, заставляя его ледяную оболочку и горные породы тереться друг о друга, выделяя тепло; к нему добавляется тепло радиоактивного распада, идущего в каменистой мантии самых крупных спутников. Благодаря этому на Европе, ле-

ных спутников и изнутри их объема. Приливы, которые вы-

ратории, анализируя образцы.

дяном спутнике Юпитера размером с Луну, существует под
47 Да, такая наука существует. Это то, что случается, когда геолог не может решить, не биолог ли он, но проводит почти все свое время в химической лабо-

метре спутнике Сатурна, жидкая вода бьет гейзерами, рассеивается в космосе и кристаллизуется ярким плюмажем, который превращается в тусклое кольцо вокруг планеты. На спутнике Юпитера Ганимеде и спутнике Сатурна Титане, двух самых крупных лунах Солнечной системы, также существуют подповерхностные глобальные океаны – такой вывод можно сделать на основании размеров и химического состава этих небесных тел, а также количества тепла, которое предположительно выделяется внутри них. Подповерхностные массивы воды так распространены, что мы можем с большой долей уверенности утверждать, что по всей Галактике существуют миллиарды покрытых льдом океанов. Неужели ни один из них не породил жизни? В нашей Солнечной системе только на Земле условия на поверхности находятся около тройной точки воды⁴⁸. Предположим, что это обязательное требование для образования жизни. (Если мыслить нешаблонно, можно предположить, что вода для жизни вообще не требуется. Тогда биологиче- 48 «А как же Марс?» – спросите вы. На Марсе так холодно, что его климат опре-

деляется не тройной точкой воды, а точкой замерзания углекислого газа. Именно из него состоит марсианская атмосфера, и какая-то часть этого газа затвердевает каждую зиму, образовывая новый слой полярной шапки. Вода на Марсе практи-

чески всегда пребывает в твердом состоянии, и ее немного.

поверхностный океан жидкой воды, по объему равный всем земным океанам вместе взятым и защищенный от экстремальных условий космоса многокилометровым термоизолирующим слоем льда. На Энцеладе, 500-километровом в диа-

зовых карманов. Планета, живые обитатели которой могут эволюционно достичь развитого сознания, иногда называемого разумом⁴⁹, должна удовлетворять и другим требованиям. Возможно, например, что возникновение разума требует наличия чего-то неизмеримо большего, чем само существо, например, звездного неба, или Луны с Солнцем, или гор на горизонте. Тогда нам придется исключить планеты, окутанные вечным смогом, или темные океаны под многокилометровым слоем льда, хотя даже в самых темных слоях земного океана и в самых глубоких земных пещерах киты и летучие мыши используют эхолокацию, чтобы ощутить расстоя-

ская эволюция должна быть основана на каком-то другом растворителе, например на жидком метане; но пока не будем отвлекаться от H_2O .) Это требование не исключает Европы; там просто потребуется наличие под слоем льда га-

бассейны океанов и вулканические острова для обеспечения достаточного числа экологических ниш; только тогда один из всего разнообразия видов сможет подняться до самой вершины эволюционной лестницы. Несомненно, звезда такой планеты должна быть стабильна в течение нескольких мил-

ние и пространство без помощи зрения. Возможно, кора и мантия подходящей для жизни планеты должны быть достаточно активными, чтобы сформировать горы, континенты,

жгут в них искру разума. Не исключено, что где-то поблизости должна взорваться сверхновая. Сформулируйте сколь угодно точные требования, а потом задайте себе вопрос: «С какой вероятностью это могло случиться?»

ник – и не просто какой угодно спутник, но обращающийся достаточно близко, чтобы случались полные солнечные затмения, которые приведут живых существ в смятение и за-

-\-\-

Пятьдесят лет назад мы совершили посадку на Луну «для всего человечества». Это стало первым случаем присутствия

людей на другой планете. С тех пор астронавты летают в лабораториях на низкой околоземной орбите, а роботы занимаются исследованиями глубокого космоса. В этом есть смысл, поскольку роботы не дышат, их не нужно возвращать

домой, и они стали настоящими мастерами в том, чтобы делать фотографии и собирать прочую информацию о разных

далеких уголках, причем все чаще им при этом вообще не нужно участие человека. Первая волна исследований Солнечной системы людьми и роботами завершилась, охватив объекты всех типов: Луну, планеты, спутники, малые спутники, кольца планет, карликовые планеты, ледяные миры,

кометы, астероиды и кентавры. Мы видели азотные равнины Плутона, каньоны Марса, гейзеры Энцелада и разноцветные вихри Юпитера. На орбиту выводятся огромные телескопы,

пересекая гелиопаузу, где давление межзвездного пространства останавливает солнечный ветер – и где начинается понастоящему глубокий космос.

Следующая волна исследований только начинается. Она

а космические аппараты, запущенные с помощью перепрофилированных военных ракет, летят к Плутону и дальше,

не продвинется намного дальше, но задействует более мелкие и более функциональные космические аппараты, которые посетят сотни самых странных и впечатляющих точек, заполняя пробелы в нашей картине миров, окружающих Солнце: другие спутники, другие астероиды, внешние пла-

неты и, возможно, Планету X. Изучат они и сотни километров лавовых труб под лунной поверхностью. Думаю, следующей волной после этой станет колонизация людьми Луны,

Марса и, возможно, Венеры, а также запуск роботов-эмиссаров, наделенных искусственным интеллектом, в «соседние» планетные системы.

Огромные области Луны⁵⁰ уже сфотографированы с разрешением в полметра. Аналогичным образом Марс⁵¹ в це-

лом отснят в масштабе примерно шесть метров на пиксель 52,

больше первой цифры и определяется размером самых мелких различимых де-

 ⁵⁰ Интерфейс просмотра изображений LROC и его домашняя страница на сайте Университета Аризоны находятся здесь: http://lroc.sese.asu.edu.
 ⁵¹ Интерфейс просмотра изображений HiRISE Университета Аризоны находится здесь: https://www.uahirise.org.

дится здесь: https://www.uahirise.org.

52 Масштаб говорит нам, сколько метров укладывается в один пиксель изображения. Это не то же самое, что разрешение снимка, которое в два или три раза

огромный интерес для исследователей и будущих колонистов.

Что же касается астрономии, в мире постоянно начинают работать новые телескопы, обладающие возможностями, о которых десять лет назад можно было только мечтать. Большой синоптический обзорный телескоп (Large Synoptic Survey Telescope, LSST) будет выдавать 20 терабайт данных за одну ночь, занимаясь представляющим новый этап в астрономии поиском скоротечных событий вроде движения астероидов, прохождений планет и взрывов звезд⁵⁴. Это приводит к фундаментальному гносеологическому перехо-

ду, когда объем больших данных становится так велик, что для того, чтобы его обработать или даже составить о нем

⁵³ NASA требует, чтобы все научные данные экспедиций архивировались и выкладывались в открытый доступ обычно не позднее чем через шесть месяцев по-

54 Примерно тот же объем видеоданных каждый день загружался на YouTube

талей изображения.

сле окончания полета.

в 2016 г.

а в определенных районах – треть метра. Все научные данные, собранные NASA, находятся в открытом доступе⁵³, и почти все эти изображения еще ждут того, чтобы на них взглянул человеческий глаз. Щелкните на любое из них, увеличьте масштаб, и вы с большой долей вероятности станете первым человеком, который заметил нечто особенное – например, булыжник, расколотый пополам микрометеоритом. А может, вы обнаружите новую пещеру, представляющую

первоначальное представление, нам требуется искусственный интеллект. Мы обучаем компьютеры обучать нас смыслу наших данных.

Это возвращает меня к геологии, где все, что вам нуж-

но, – любопытство, благоприятная возможность и справоч-

ник. Поднимайте камни и смотрите на них внимательно. Раскалывайте их и изучайте с помощью лупы. Делайте зарисовки и читайте геологические описания своих участков. Посещайте полевые занятия, где вас научат замерять падения и уклоны. Пытайтесь выполнять палеореконструкции ландшафтов. Рассматривайте стены старых каменных зданий. Читайте путеводители или установите на телефон приложение, чтобы отправиться в прошлое во время любой загородной прогулки. В самой глубине Большого каньона Колорадо исследуйте кристаллические сланцы Вишну — возникшие из непримечательного протерозойского ила породы метаморфического основания, — само название которых напоминает об акте творения.

Сколько мы ни искали, мы пока не нашли ничего, что можно было бы назвать второй Землей. У нас есть несколько кандидатов, но пройдут еще десятки лет, прежде чем мы будем знать, так ли это. Что тогда? Если подтвердится существование землеподобных планет, обращающихся вокруг одной из соседних звезд, — скажем, в пределах 30 световых лет, — попытаются ли люди до нее добраться? Если говорить о периоде в тысячи лет, мы, кажется, неизбежно это сде-

научно-фантастического романа. Задолго до этого мы, на мой взгляд, создадим вторую Землю где-то неподалеку, скажем, освоив биопреципитацию углекислого газа из атмосферы Венеры и создав там экзотический сказочный ландшафт, который можно будет заселить земными организмами. Мы можем поспорить, этично ли менять геологию других планет, но эта дискуссия уже стала неактуальной с учетом того, как своевольно мы меняем биосферу нашей собственной.

лаем: один из наших прапраправнуков⁵⁵ отправится сквозь бесконечную пустоту в путешествие в один конец, которое будет продолжаться веками, на протяжении жизни многих поколений. Мне этот путь видится чрезвычайно опасным и наполненным одиночеством, сюжетом для классического

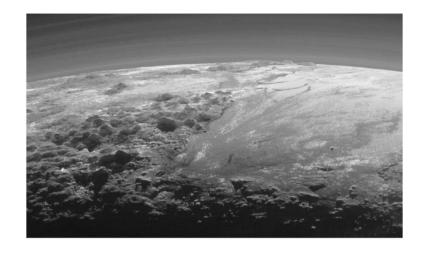
Если исследование – это «ян» науки, то понимание – ее «инь». Одно не может двигаться вперед без другого. Жаж-

да исследований у нас в крови, но мы испытываем сравнимое удовлетворение от понимания того, почему что-то обстоит так, а не иначе, как оно таким стало и как оно функционирует. После пяти лет работы над созданием научных инструментов и уникального по своей быстроте и легкости космического аппарата, после всей детальной подготовки к его

⁵⁵ На самом деле тысячелетие соответствует примерно 30-кратному повторению приставки пра-.

Пролет над Плутоном и Хароном, осуществленный аппаратом «Новые горизонты» в 2015 г., занял всего четверть часа, но стал событием, превратившим их из нескольких загадочных пикселей в волшебную страну с карамельными горами, морями под шоколадной глазурью, выступами трещиноватых и сложенных в складки пород с невиданной нами прежде активной геологией, покрытыми кристаллическим азотом равнинами и сверкающим Сердцем Плутона. Все это после десятилетий предположений, наблюдений, анализа, принятия решений, затыкания дыр, планирования, пода-

чи заявок, лоббирования, проектирования, тестирования и сборки. И точно так же в лабораториях и исследовательских центрах по всему миру сейчас исподволь начинаются смелые


экспедиции будущего.

старту, после еще десяти лет и 4,8 млрд километров космического перелета сотрудники программы «Новые горизонты» стали первыми людьми, увидевшими геологию девятой планеты, которая со времени ее открытия в 1930 г. оставалась просто точкой на фотографической эмульсии. Только в 1990-е космический телескоп «Хаббл» смог разглядеть в ней

пару точек – двойную планету, два пятнышка света.

новыми горизонтами. - М.: Альпина нон-фикшн, 2019.

⁵⁶ Научный руководитель экспедиции Алан Стерн и его соавтор Дэвид Гринспун пишут об этом в книге *Chasing New Horizons: Inside the Epic First Mission to Pluto* (Picador: New York, 2018). Русский перевод: Стерн А., Гринспун Д. За

Закат над горами Плутона. Через 15 минут после максимального сближения аппарата «Новые горизонты» с планетой 14 июля 2015 г. он развернулся, чтобы сделать этот прощальный снимок. Гладкое пространство справа называется Равниной Спутника, левее расположены горы Тенцинга высотой до 3500 м. Горы Хиллари видны на горизонте. Падающий сзади свет подчеркивает слои дымки в разреженной, но достигающей больших высот атмосфере Плутона. Весь пейзаж достигает почти 400 км в поперечнике.

NASA/Johns Hopkins University Applied Physics Laboratory/ Southwest Research Institute

Мы изучили только малую долю тел Солнечной системы. У нас пока не было отдельных экспедиций к Нептуну и Ура-

ные пещеры, которые остаются абсолютно неисследованными. Все это места, куда мы можем полететь. Но, как бы то ни было, из всех небесных тел, на которых мы побывали, хорошо известно нам только одно – планета, давшая нам жизнь.

ну, мы никогда не садились на Меркурий или Ганимед, крупнейший из известных нам спутников. Каково находится там, где бьют гейзеры Энцелада? На Луне и Марсе есть огром-

«Почему мир устроен именно таким образом?» Слишком общий вопрос. «Почему все эти миры так различны?» Это уже более точная формулировка. Чтобы ответить на этот вопрос, мы должны вернуться назад, во времена, когда никаких планет еще не было.

Глава 1 Древние руины

Небесная сеть широка и редка, Но из нее ничто не ускользает.

Лао-изы. Книга о пути жизни⁵⁷

Изучение планет привело к появлению сотен прославленных философов и забытых мудрецов по всему миру. Как в Большом взрыве, определенного центра расширения тут не было, но несколько выдающихся визионеров возвышаются, как верстовые столбы, на дороге к тому месту, где мы сейчас оказались⁵⁸

⁵⁷ Пер. В. Малявина.

⁵⁸ Поскольку наука была сферой деятельности почти одних мужчин, эти вехи оставлены практически исключительно ими, и так продолжалось до начала XX в. Выдавливание из научного сообщества амбициозных и творческих ученых-женщин ограничивало возможности науки и тормозило ее развитие. Это сейчас меняется, и последствия таких изменений огромны.

Конец ознакомительного фрагмента.

Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, <u>купив полную легальную</u> версию на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.