Отзывы о книге
Одиночество в большом городе – 3

Авторы:
Русских Виктория
Серия:
Женщины. Путь к счастью
Возрастное ограничение:
1+
Язык:
Русский
Язык оригинала:
Русский
Издательство:
SelfPub
Год:
2023

Отзывы

mgarkunov
20 January 2023
Отзыв

Я уже давно понимал и учитывал темные данные в своих отчетах и общении с бизнес-заказчиками, а теперь есть хорошо структурированная и полезная книга, которую можно рекомендовать всем.

Считаю, что эту книгу обязательно должны прочесть все аналитики и те, кто работает с отчетами.

Михаил Панкратов
08 May 2021
Отзыв

Просмотр других отзывов вызывает некоторое недоумение. Эти комментаторы точно читали книгу?

Итак, о чем же книга: эта книга написана президентом Британского Королевского Статистического Общества, и основная ее тема это теория вероятности и математическая статистика. Целевая аудитория – те кому нравится творчество Талеба, Млодинова, Мобуссина и других сходных авторов.

Из того, что я читал, похоже на книгу «Как лгать при помощи статистики» Дарелла Хаффа. Но гораздо глубже и современнее конечно.

В книге разбираются такие вопросы как, например, что делать если в социологическом опросе часть респондентов вообще не ответили на вопросы? Можно их просто не учитывать? (спойлер: нет, нельзя) Ну или как поступать, когда при испытаниях нового лекарства часть испытуемых по собственному желанию вышли из программы досрочно. Можно их просто вычеркнуть, как будто их и не было никогда? (спойлер: снова нет). Вот это и есть те самые «темные данные» которым посвящена книга.

Эта книга НЕ ПРО приватность и сохранность личных данных в интернете. Этот вопрос пару раз упоминается но совершенно мимоходом.

Также эта книга НЕ ПРО Big Data. Все что рассматривается тут это структурированные данные полученные от агентств вроде министерства здравоохранения или в ходе, скажем, клинического эксперимента. Big Data это обработка естественного языка, изображений, звука и видео контента. В книге про это нет ничего или почти ничего.

Этические вопросы сбора данных о людях по большей части тоже лежат за пределами данной книги. Тоже пара упоминаний вскользь о том, что такая проблема в принципе есть – не более того. Так что книга НЕ ПРО это тоже.

Ближе к самой книге: первая половина, на мой взгляд, написана просто отлично. Очень интересно, много классных вопросов и примеров. Все по теме. Вторая половина, к сожалению, огорчает. Автор начинает слишком сильно растекаться мыслями. Получается повествование просто обо всем и в результате ни о чем одновременно. Он пытается охватить сразу и астрофизику и биржевые махинации и медицинские вопросы и вообще все. В итоге повествование теряет фокус, становится расплывчатым и неконкретным.

Было бы лучше, если бы автор пошел не в ширь, а в глубь. То есть более глубоко рассмотрел поднятые им же самим вопросы. Почему промахивались социологические опросы касательно победы Трампа? Почему статистические органы рапортуют аномально низкие показатели инфляции хотя потребители отмечают повышение цен? А промахи опросов касательно брексита? Вот где не мешало бы покопаться в темных данных.

А как насчет проблем с кредитным скорингом перед кризисом 2008 года? Как получалось, что множество заемщиков невероятно низкого качества получило такие объемы кредитов? Я изучал вопрос более глубоко и знаю, что тут тоже не обошлось без изрядной доли темных данных.

В общем, за первую половину книги 5 звезд, а за вторую половину две. В итоге в среднем 3,5 звезды, которые я округлил в пользу автора до 4. Почитать все же стоит.

autoreg875996569
23 March 2021
Отзыв

Просто, понятно, без длинных отступлений и туманных рассуждений на отвлеченные темы. Книга, которую хочется перечитывать. Жалею, что не прочла раньше.

julia_nomad
04 February 2021
Отзыв

Книга-топ. Достаточно простая, чтобы не считать её академической литературы. Но на весьма сложную и специфическую тему. Напоминает концепцию безмасштабных сетей, но уже в более практическом, конкретном смысле.

Александр
03 February 2021
Отзыв

Если любите математику и теорию вероятности, книга точно вас развлечёт. Особенно в голову запал принцип работы с тёмными данными, ближе к концу книги. Людям со стороны может быть интересно прочитать её как путеводитель в мире современного интернета и облачных данных. Сразу вспоминаю недавний «слив» личных данных россиян и общую беспомощность людей в таких вопросах. После прочтения книги где-то станет менее страшно, а где-то наоборот)

Настя
03 February 2021
Отзыв

В условиях повальной цифровизации всего и вся наконец кто-то начал задавать неудобные вопросы..Очень необычная теория. Оригинально, познавательно и на понятных примерах рассказано где «обитает» информация, по каким правилам движется в сети и реально ли полностью извлечь собственные данные из всемирной паутины (и разумно ли это).

Ivan
02 February 2021
Отзыв

Книга может показаться немного сложноватой, но она того стоит. Ещё рекомендую книгу «Формула» Барабаши, подобного плана. Как статистика и информатика поможет увидеть важные или опасные закономерности в повседневности.

Сергей
02 February 2021
Отзыв

Готовьтесь, будет много цифр. Но прочитать это нужно всем, кто задействован в продажах или занимается распространением своего/чужого творчества. Из приведённых теорий и алгоритмов можно начать интуитивно понимать любые механизмы распространения и хранения данных.

Alexander Khadzhinov
01 February 2021
Отзыв

Мы живем в мире в котором, казалось бы, уже есть бесчисленное множество информации и знаний о каждом из нас. Но на самом деле существует иная сторона – Dark Data – «темные данные», которые хранятся, но нигде не используются! Простой пример – при текущем уровне развития искусственного интеллекта (ИИ), машинного обучения и Интернета вещей (IoT), объём хранимых в мире Dark Data через пять вырастет в 5 раз – до 91 зеттабайт при условии что общий объем Big Data будет составлять по оценкам IDC 175 зеттабайт. На разных примерах Дэвид Хэнд показывает необходимость в идентификации и выявлении этого огромного океана данных, их классификации, а так же изменения политик обработки таких данных. Острая необходимость в этом связана хотя бы с тем что

"для поглощения выбросов углекислого газа, связанных с хранением «темных данных», потребуется 7 500 000 акров леса (3,0 млн гектаров)" (c)